論文の概要: Word Sense Induction with Knowledge Distillation from BERT
- arxiv url: http://arxiv.org/abs/2304.10642v1
- Date: Thu, 20 Apr 2023 21:05:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-24 16:35:24.620965
- Title: Word Sense Induction with Knowledge Distillation from BERT
- Title(参考訳): BERTからの知識蒸留による単語センス誘導
- Authors: Anik Saha, Alex Gittens, Bulent Yener
- Abstract要約: 本稿では、文脈における単語の感覚に注意を払って、事前学習された言語モデル(BERT)から複数の単語感覚を抽出する手法を提案する。
文脈的単語類似性および感覚誘導タスクの実験は、この手法が最先端のマルチセンス埋め込みよりも優れているか、あるいは競合していることを示している。
- 参考スコア(独自算出の注目度): 6.88247391730482
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Pre-trained contextual language models are ubiquitously employed for language
understanding tasks, but are unsuitable for resource-constrained systems.
Noncontextual word embeddings are an efficient alternative in these settings.
Such methods typically use one vector to encode multiple different meanings of
a word, and incur errors due to polysemy. This paper proposes a two-stage
method to distill multiple word senses from a pre-trained language model (BERT)
by using attention over the senses of a word in a context and transferring this
sense information to fit multi-sense embeddings in a skip-gram-like framework.
We demonstrate an effective approach to training the sense disambiguation
mechanism in our model with a distribution over word senses extracted from the
output layer embeddings of BERT. Experiments on the contextual word similarity
and sense induction tasks show that this method is superior to or competitive
with state-of-the-art multi-sense embeddings on multiple benchmark data sets,
and experiments with an embedding-based topic model (ETM) demonstrates the
benefits of using this multi-sense embedding in a downstream application.
- Abstract(参考訳): 事前訓練された文脈言語モデルは、言語理解タスクにユビキタスに使用されるが、リソース制約されたシステムには適さない。
非文脈語埋め込みはこれらの設定において効率的な代替手段である。
このような方法は通常、1つのベクターを使って単語の複数の異なる意味を符号化し、ポリセミーによる誤りを発生させる。
本稿では,事前学習された言語モデル(bert)から複数の単語の感覚を,文脈内の単語の感覚に注意を払い,この感覚情報をスキップグラムのような枠組みで多意味埋め込みに適合させる2段階の手法を提案する。
bertの出力層埋め込みから抽出した単語感覚の分布を用いて,モデルの感覚曖昧化機構をトレーニングするための効果的なアプローチを示す。
文脈的単語類似性と感覚誘発タスクに関する実験は、この手法が複数のベンチマークデータセットに対する最先端のマルチセンス埋め込みよりも優れていることを示し、etm(embedd-based topic model)による実験は、下流アプリケーションでこのマルチセンス埋め込みを使用することの利点を示している。
関連論文リスト
- Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Learning Sense-Specific Static Embeddings using Contextualised Word
Embeddings as a Proxy [26.385418377513332]
感覚の文脈導出埋め込み(CDES)を提案する。
CDESは文脈的埋め込みから感覚関連情報を抽出し、それを静的埋め込みに注入し、センス固有の静的埋め込みを生成する。
本報告では,CDESが,現在の最先端感埋め込みに匹敵する性能を示す,感覚特異的な静的埋め込みを正確に学習可能であることを示す。
論文 参考訳(メタデータ) (2021-10-05T17:50:48Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
テキスト編集や意味的類似性評価といった自然言語処理タスクにおいて、ペア化されたテキストに重複が頻繁に発生する。
本稿では,マスク・アンド・予測戦略を用いてこの問題に対処することを目的とする。
本稿では,最も長い単語列の単語を隣接する単語とみなし,その位置の分布を予測するためにマスク付き言語モデリング(MLM)を用いる。
セマンティックテキスト類似性の実験では、NDDは様々な意味的差異、特に高い重なり合うペアテキストに対してより敏感であることが示されている。
論文 参考訳(メタデータ) (2021-10-04T03:59:15Z) - Training Bi-Encoders for Word Sense Disambiguation [4.149972584899897]
Word Sense Disambiguationの最先端のアプローチは、これらのモデルからの事前訓練された埋め込みとともに語彙情報を活用し、標準評価ベンチマークにおける人間間のアノテータ合意に匹敵する結果を得る。
我々はさらに,多段階事前学習および微調整パイプラインを通じて,Word Sense Disambiguationにおける技術の現状について述べる。
論文 参考訳(メタデータ) (2021-05-21T06:06:03Z) - EDS-MEMBED: Multi-sense embeddings based on enhanced distributional
semantic structures via a graph walk over word senses [0.0]
WordNetの豊富なセマンティック構造を活用して、マルチセンス埋め込みの品質を高めます。
M-SEの新たな分布意味類似度測定法を先行して導出する。
WSDとWordの類似度タスクを含む11のベンチマークデータセットの評価結果を報告します。
論文 参考訳(メタデータ) (2021-02-27T14:36:55Z) - Accurate Word Representations with Universal Visual Guidance [55.71425503859685]
本稿では,視覚指導から従来の単語埋め込みを視覚的に強調する視覚的表現法を提案する。
各単語が多様な関連画像に対応するマルチモーダルシードデータセットから,小型の単語画像辞書を構築する。
12の自然言語理解および機械翻訳タスクの実験により,提案手法の有効性と一般化能力がさらに検証された。
論文 参考訳(メタデータ) (2020-12-30T09:11:50Z) - Cross-lingual Word Sense Disambiguation using mBERT Embeddings with
Syntactic Dependencies [0.0]
言語間の単語感覚の曖昧さ (WSD) は、与えられた文脈にまたがるあいまいな単語の曖昧さに対処する。
BERT埋め込みモデルは、単語の文脈情報に有効であることが証明されている。
このプロジェクトは、構文情報がどのようにBERT埋め込みに追加され、セマンティクスと構文を組み込んだ単語埋め込みの両方をもたらすかを調査します。
論文 参考訳(メタデータ) (2020-12-09T20:22:11Z) - On the Sentence Embeddings from Pre-trained Language Models [78.45172445684126]
本稿では,BERT埋め込みにおける意味情報が完全に活用されていないことを論じる。
BERTは常に文の非滑らかな異方性意味空間を誘導し,その意味的類似性を損なう。
本稿では,非教師対象で学習した正規化フローにより,異方性文の埋め込み分布を滑らかで等方性ガウス分布に変換することを提案する。
論文 参考訳(メタデータ) (2020-11-02T13:14:57Z) - A Comparative Study on Structural and Semantic Properties of Sentence
Embeddings [77.34726150561087]
本稿では,関係抽出に広く利用されている大規模データセットを用いた実験セットを提案する。
異なる埋め込み空間は、構造的および意味的特性に対して異なる強度を持つことを示す。
これらの結果は,埋め込み型関係抽出法の開発に有用な情報を提供する。
論文 参考訳(メタデータ) (2020-09-23T15:45:32Z) - MICE: Mining Idioms with Contextual Embeddings [0.0]
MICEatic式は自然言語処理アプリケーションでは問題となることがある。
我々は,その目的のためにコンテキスト埋め込みを利用するアプローチを提案する。
両埋め込みを用いたディープニューラルネットワークは,既存のアプローチよりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-08-13T08:56:40Z) - Word Sense Disambiguation for 158 Languages using Word Embeddings Only [80.79437083582643]
文脈における単語感覚の曖昧さは人間にとって容易であるが、自動的アプローチでは大きな課題である。
本稿では,学習前の標準単語埋め込みモデルを入力として,完全に学習した単語認識のインベントリを誘導する手法を提案する。
この手法を用いて、158の言語に対して、事前訓練されたfastText単語の埋め込みに基づいて、センスインベントリのコレクションを誘導する。
論文 参考訳(メタデータ) (2020-03-14T14:50:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。