論文の概要: Revealing the Hidden Patterns: A Comparative Study on Profiling
Subpopulations of MOOC Students
- arxiv url: http://arxiv.org/abs/2008.05850v1
- Date: Wed, 12 Aug 2020 10:38:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 06:16:50.978434
- Title: Revealing the Hidden Patterns: A Comparative Study on Profiling
Subpopulations of MOOC Students
- Title(参考訳): 隠れパターンの探索:MOOC学生の人口分布のプロファイリングに関する比較研究
- Authors: Lei Shi, Alexandra I. Cristea, Armando M. Toda, Wilk Oliveira
- Abstract要約: MOOC(Massive Open Online Courses)は、学生の異質性を示す。
MOOCプラットフォームからの複雑な“ビッグデータ”の出現は、学生がMOOCにどのように従事しているかを深く理解する上で、難しいが報われる機会である。
本報告では,MOOCにおける学生活動のクラスタリング分析と,学生集団間の行動パターンと人口動態の比較分析について述べる。
- 参考スコア(独自算出の注目度): 61.58283466715385
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Massive Open Online Courses (MOOCs) exhibit a remarkable heterogeneity of
students. The advent of complex "big data" from MOOC platforms is a challenging
yet rewarding opportunity to deeply understand how students are engaged in
MOOCs. Past research, looking mainly into overall behavior, may have missed
patterns related to student diversity. Using a large dataset from a MOOC
offered by FutureLearn, we delve into a new way of investigating hidden
patterns through both machine learning and statistical modelling. In this
paper, we report on clustering analysis of student activities and comparative
analysis on both behavioral patterns and demographical patterns between student
subpopulations in the MOOC. Our approach allows for a deeper understanding of
how MOOC students behave and achieve. Our findings may be used to design
adaptive strategies towards an enhanced MOOC experience
- Abstract(参考訳): MOOC(Massive Open Online Courses)は、学生の異質性を示す。
MOOCプラットフォームからの複雑な“ビッグデータ”の出現は、学生がMOOCにどのように従事しているかを深く理解する上で、難しいが報われる機会である。
これまでの研究では、学生の多様性に関するパターンを見逃していた可能性がある。
futurelearnが提供するmoocの大規模なデータセットを使用して、マシンラーニングと統計モデリングの両方を通じて隠れたパターンを調べる新しい方法を考え出した。
本稿では,MOOCにおける学生活動のクラスタリング分析と,学生集団間の行動パターンと人口動態パターンの比較分析について報告する。
私たちのアプローチはMOOCの学生の行動や達成方法の理解を深めます。
この知見はMOOC体験の向上に向けた適応戦略の設計に有用である。
関連論文リスト
- A Comparative Analysis of Student Performance Predictions in Online Courses using Heterogeneous Knowledge Graphs [0.0]
学生,コースビデオ,フォーマティブアセスメント,および学生のパフォーマンス予測のためのインタラクションからなる異種知識グラフを分析した。
次に、同一コースの5つのオンラインMOOCスタイルインスタンスと2つの完全オンラインMOOCスタイルインスタンスを比較した。
このモデルは、生徒が消費したコンテンツ、コース、モダリティに基づいて、特定の問題に合格するかどうかを予測する精度を70~90%向上した。
論文 参考訳(メタデータ) (2024-05-19T03:33:59Z) - Toward In-Context Teaching: Adapting Examples to Students' Misconceptions [54.82965010592045]
本稿ではAdapTと呼ばれる一連のモデルと評価手法を紹介する。
AToMは、学生の過去の信念を共同で推論し、将来の信念の正しさを最適化する適応教育の新しい確率論的モデルである。
本研究は,適応型学習課題の難しさと,それを解決するための学習適応モデルの可能性を両立させるものである。
論文 参考訳(メタデータ) (2024-05-07T17:05:27Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - Multi-View MOOC Quality Evaluation via Information-Aware Graph
Representation Learning [26.723385384507274]
マルチビューMOOC品質評価のための情報認識グラフ表現学習(IaGRL)を開発した。
まず、MOOCプラットフォームにおけるエンティティ間の相互作用と関係を表現するために、MOOC異種ネットワーク(HIN)を構築した。
そして、MOOC HINをメタパスに基づいて複数の単一関係グラフに分解し、コースのマルチビューセマンティクスを記述する。
論文 参考訳(メタデータ) (2023-01-01T10:27:06Z) - Multi-Layer Personalized Federated Learning for Mitigating Biases in Student Predictive Analytics [8.642174401125263]
本稿では,学生グループ化基準の異なる層にまたがる推論精度を最適化する多層パーソナライズドフェデレーションラーニング手法を提案する。
提案手法では,個別の学生サブグループに対するパーソナライズされたモデルがグローバルモデルから導出される。
3つの実世界のオンラインコースデータセットの実験は、既存の学生モデルベンチマークよりも、我々のアプローチによって達成された大きな改善を示している。
論文 参考訳(メタデータ) (2022-12-05T17:27:28Z) - Student-centric Model of Learning Management System Activity and
Academic Performance: from Correlation to Causation [2.169383034643496]
近年,学生の学習行動パターンを理解するために,学習管理システム(LMS)における学習者のデジタルトレースのモデル化に多くの関心が寄せられている。
本稿では,LMS活動データに対する学生中心の分析フレームワークについて検討し,観察データから抽出した相関性だけでなく因果的洞察も提供する。
これらの知見は、大学生支援団体が学生中心で標的とする介入を開始するための証拠となると期待している。
論文 参考訳(メタデータ) (2022-10-27T14:08:25Z) - Mitigating Biases in Student Performance Prediction via Attention-Based
Personalized Federated Learning [7.040747348755578]
従来の学習に基づく学生モデリングのアプローチは、データの可用性のバイアスにより、表現不足の学生グループにあまり一般化しない。
本研究では,オンライン学習活動から学生のパフォーマンスを予測する手法を提案し,人種や性別などの異なる集団を対象とした推論精度を最適化する。
論文 参考訳(メタデータ) (2022-08-02T00:22:20Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
大規模なオープンオンラインコース(MOOC)は、その柔軟性のおかげで、eラーニングの一般的な選択肢となっている。
多くの学習者とその多様な背景から、リアルタイムサポートの提供は課税されている。
MOOCインストラクターの大量の投稿と高い作業負荷により、インストラクターが介入を必要とするすべての学習者を識別できる可能性は低いです。
本稿では,モンテカルロドロップアウトと変分推論という2つの手法を用いて,学習者によるテキスト投稿のベイジアン深層学習を初めて検討する。
論文 参考訳(メタデータ) (2021-04-26T15:12:13Z) - Social Engagement versus Learning Engagement -- An Exploratory Study of
FutureLearn Learners [61.58283466715385]
大規模なオープンオンラインコース (MOOCs) は増加傾向にあるが、エンロリーのごく一部しかMOOCsを完了していない。
この研究は、MOOCにおける研究の進展とともに、学習者がピアとどのように相互作用するかに特に関係している。
この研究は、社会的構成主義的アプローチを採用し、協調学習を促進するFutureLearnプラットフォーム上で行われた。
論文 参考訳(メタデータ) (2020-08-11T16:09:10Z) - Social Interactions Clustering MOOC Students: An Exploratory Study [57.822523354358665]
コメントは、学生が学生とどのように交流したか、例えば学生のコメントが同僚から返信を受けたかに基づいて分類された。
統計的モデリングと機械学習はコメント分類の分析に用いられ、3つの強く安定したクラスタが生成される。
論文 参考訳(メタデータ) (2020-08-10T09:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。