論文の概要: Mitigating Biases in Student Performance Prediction via Attention-Based
Personalized Federated Learning
- arxiv url: http://arxiv.org/abs/2208.01182v1
- Date: Tue, 2 Aug 2022 00:22:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-03 12:55:35.366312
- Title: Mitigating Biases in Student Performance Prediction via Attention-Based
Personalized Federated Learning
- Title(参考訳): 意識に基づく個人化フェデレーション学習による学生のパフォーマンス予測におけるバイアスの緩和
- Authors: Yun-Wei Chu, Seyyedali Hosseinalipour, Elizabeth Tenorio, Laura Cruz,
Kerrie Douglas, Andrew Lan, Christopher Brinton
- Abstract要約: 従来の学習に基づく学生モデリングのアプローチは、データの可用性のバイアスにより、表現不足の学生グループにあまり一般化しない。
本研究では,オンライン学習活動から学生のパフォーマンスを予測する手法を提案し,人種や性別などの異なる集団を対象とした推論精度を最適化する。
- 参考スコア(独自算出の注目度): 7.040747348755578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional learning-based approaches to student modeling generalize poorly
to underrepresented student groups due to biases in data availability. In this
paper, we propose a methodology for predicting student performance from their
online learning activities that optimizes inference accuracy over different
demographic groups such as race and gender. Building upon recent foundations in
federated learning, in our approach, personalized models for individual student
subgroups are derived from a global model aggregated across all student models
via meta-gradient updates that account for subgroup heterogeneity. To learn
better representations of student activity, we augment our approach with a
self-supervised behavioral pretraining methodology that leverages multiple
modalities of student behavior (e.g., visits to lecture videos and
participation on forums), and include a neural network attention mechanism in
the model aggregation stage. Through experiments on three real-world datasets
from online courses, we demonstrate that our approach obtains substantial
improvements over existing student modeling baselines in predicting student
learning outcomes for all subgroups. Visual analysis of the resulting student
embeddings confirm that our personalization methodology indeed identifies
different activity patterns within different subgroups, consistent with its
stronger inference ability compared with the baselines.
- Abstract(参考訳): 従来の学習に基づく学生モデリングのアプローチは、データの可用性のバイアスにより、表現不足の学生グループにあまり一般化しない。
本稿では,人種や性別などの異なる集団に対する推定精度を最適化するオンライン学習活動から,学生のパフォーマンスを予測する手法を提案する。
近年のフェデレーション学習の基盤を基盤として,個々の学生サブグループのパーソナライズされたモデルは,サブグループの多様性を考慮したメタグレード更新を通じて,全学生モデルに集約されたグローバルモデルから導出される。
学生活動のより良い表現を学習するために,学生行動の多様性(講義ビデオの訪問やフォーラムへの参加など)を活用する自己指導型行動事前学習手法を用いて,モデル集約段階におけるニューラルネットワークの注意機構を含むアプローチを強化する。
オンラインコースから得られた実世界の3つのデータセットの実験を通して,本手法は,すべてのサブグループの学習結果を予測する上で,既存のモデリングベースラインよりも大幅に改善されていることを示す。
生徒の埋め込みを視覚的に分析した結果、パーソナライズ手法によって、異なるサブグループ内の異なるアクティビティパターンが実際に識別され、ベースラインと比較して強力な推論能力と一致していることが確認された。
関連論文リスト
- An Active Learning Framework for Inclusive Generation by Large Language Models [32.16984263644299]
大規模言語モデル(LLM)は、多様なサブ集団を表すテキストを生成する。
本稿では,知識蒸留により強化されたクラスタリングに基づくアクティブラーニングフレームワークを提案する。
2つの新しいデータセットをモデルトレーニングと組み合わせて構築し、ベースラインモデルよりも2%-10%の性能向上を示した。
論文 参考訳(メタデータ) (2024-10-17T15:09:35Z) - Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
本研究では,ニューラルネットワークをアンサンブル手法として活用することを検討する。
低多様性のアンサンブルを学習するリスクを動機として,ベースモデル予測をランダムにドロップすることでモデルの正規化を提案する。
このアプローチはアンサンブル内の多様性を低くし、オーバーフィッティングを減らし、一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-10-06T15:25:39Z) - RIGL: A Unified Reciprocal Approach for Tracing the Independent and Group Learning Processes [22.379764500005503]
個人レベルとグループレベルの両方で知識状態をトレースする統合相互モデルであるRIGLを提案する。
本稿では,学生と集団の相互作用を同時にモデル化するための時間フレーム対応の相互埋め込みモジュールを提案する。
動的グラフモデリングと時間的自己注意機構を組み合わせた関係誘導型時間的注意ネットワークを設計する。
論文 参考訳(メタデータ) (2024-06-18T10:16:18Z) - Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML)は、トレーニング済みモデルのコレクションから、元のデータにアクセスせずに知識を抽出することを目的としている。
現在の手法は、事前訓練されたモデル間の不均一性を見落とし、タスクの衝突による性能低下につながることが多い。
課題群規則化(Task Groupings Regularization)は、矛盾するタスクをグループ化し整合させることにより、モデルの不均一性から恩恵を受ける新しいアプローチである。
論文 参考訳(メタデータ) (2024-05-26T13:11:55Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Multi-Layer Personalized Federated Learning for Mitigating Biases in Student Predictive Analytics [8.642174401125263]
本稿では,学生グループ化基準の異なる層にまたがる推論精度を最適化する多層パーソナライズドフェデレーションラーニング手法を提案する。
提案手法では,個別の学生サブグループに対するパーソナライズされたモデルがグローバルモデルから導出される。
3つの実世界のオンラインコースデータセットの実験は、既存の学生モデルベンチマークよりも、我々のアプローチによって達成された大きな改善を示している。
論文 参考訳(メタデータ) (2022-12-05T17:27:28Z) - Predicting student performance using sequence classification with
time-based windows [1.5836913530330787]
本研究では,学生の行動データから得られた逐次的パターンに基づいて,正確な予測モデルを構築することができることを示す。
本稿では,行動データの時間的側面を把握し,モデルの性能予測に与える影響を解析する手法を提案する。
改良されたシーケンス分類手法は,高レベルの精度で生徒のパフォーマンスを予測でき,コース固有のモデルでは90%に達する。
論文 参考訳(メタデータ) (2022-08-16T13:46:39Z) - Representation Matters: Assessing the Importance of Subgroup Allocations
in Training Data [85.43008636875345]
訓練データにおける多様な表現は,サブグループのパフォーマンス向上と集団レベルの目標達成の鍵である。
分析と実験は、データセット構成がパフォーマンスにどのように影響するかを説明し、既存のデータにおけるトレンドとドメイン知識を用いて、意図的かつ客観的なデータセット設計を導くのに役立つ構成結果を提供する。
論文 参考訳(メタデータ) (2021-03-05T00:27:08Z) - Collaborative Group Learning [42.31194030839819]
協調学習は、小規模学生ネットワークのプールをロバストなローカルミニマへと導くために、知識伝達をうまく応用してきた。
従来のアプローチでは、学生の数が増加すると、学生の均質化が大幅に増加するのが普通だった。
特徴表現の多様化と効果的な正規化の実現を目的とした,効率的なフレームワークである協調型グループ学習を提案する。
論文 参考訳(メタデータ) (2020-09-16T14:34:39Z) - Revealing the Hidden Patterns: A Comparative Study on Profiling
Subpopulations of MOOC Students [61.58283466715385]
MOOC(Massive Open Online Courses)は、学生の異質性を示す。
MOOCプラットフォームからの複雑な“ビッグデータ”の出現は、学生がMOOCにどのように従事しているかを深く理解する上で、難しいが報われる機会である。
本報告では,MOOCにおける学生活動のクラスタリング分析と,学生集団間の行動パターンと人口動態の比較分析について述べる。
論文 参考訳(メタデータ) (2020-08-12T10:38:50Z) - Three Approaches for Personalization with Applications to Federated
Learning [68.19709953755238]
本稿では,パーソナライゼーションの体系的学習理論について述べる。
学習理論の保証と効率的なアルゴリズムを提供し、その性能を実証する。
全てのアルゴリズムはモデルに依存しず、任意の仮説クラスで機能する。
論文 参考訳(メタデータ) (2020-02-25T01:36:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。