論文の概要: Balancing Taxi Distribution in A City-Scale Dynamic Ridesharing Service:
A Hybrid Solution Based on Demand Learning
- arxiv url: http://arxiv.org/abs/2008.05890v2
- Date: Tue, 13 Oct 2020 20:40:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 02:19:56.499589
- Title: Balancing Taxi Distribution in A City-Scale Dynamic Ridesharing Service:
A Hybrid Solution Based on Demand Learning
- Title(参考訳): 都市規模のダイナミックライドシェアリングサービスにおけるタクシー分布のバランス:需要学習に基づくハイブリッドソリューション
- Authors: Jiyao Li, Vicki H. Allan
- Abstract要約: 本研究では,動的なライドシェアリングサービスにおいて,都市間のタクシー配電のバランスをとる上での課題について検討する。
本稿では,Correlated Pooling が関連ライダーの要求を収集し,Adjacency Ride-Matching が要求学習に基づくタクシーをライダーに割り当て,Greedy Idle Movement が現在利用者が必要な地域への配車なしでタクシーを誘導することを目的としたハイブリッドソリューションを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the challenging problem of how to balance taxi
distribution across a city in a dynamic ridesharing service. First, we
introduce the architecture of the dynamic ridesharing system and formally
define the performance metrics indicating the efficiency of the system. Then,
we propose a hybrid solution involving a series of algorithms: the Correlated
Pooling collects correlated rider requests, the Adjacency Ride-Matching based
on Demand Learning assigns taxis to riders and balances taxi distribution
locally, the Greedy Idle Movement aims to direct taxis without a current
assignment to the areas with riders in need of service. In the experiment, we
apply city-scale data sets from the city of Chicago and complete a case study
analyzing the threshold of correlated rider requests and the average online
running time of each algorithm. We also compare our hybrid solution with
multiple other methods. The results of our experiment show that our hybrid
solution improves customer serving rate without increasing the number of taxis
in operation, allows both drivers to earn more and riders to save more per
trip, and all with a small increase in calling and extra trip time.
- Abstract(参考訳): 本稿では,動的なライドシェアリングサービスにおいて,都市間のタクシー配電のバランスをとる上での課題について検討する。
まず、動的なライドシェアリングシステムのアーキテクチャを紹介し、システムの効率性を示すパフォーマンス指標を形式的に定義する。
そこで,提案手法では,相互に関連付けられた乗降要求を収集し,需要学習に基づく随伴乗車マッチングを行い,乗降者に対してタクシーを配車し,局所的に配車バランスをとる。
実験では,シカゴ市の都市規模データセットを適用し,相関したライダー要求のしきい値と各アルゴリズムの平均オンライン実行時間を分析するケーススタディを完成させた。
ハイブリッドソリューションと他の方法との比較も行います。
実験の結果,当社のハイブリッドソリューションは,運転中のタクシーの数を増加させることなく,客のサービス率を向上し,運転者双方がより多くの収入を得ることができ,乗車1回あたりの節約も可能であり,通話時間や余分な旅行時間も少ないことがわかった。
関連論文リスト
- GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: GPT拡張強化学習のフレームワーク。
本稿では,GPT強化強化学習とインテリジェント制御のフレームワークであるGARLICについて紹介する。
論文 参考訳(メタデータ) (2024-08-19T08:23:38Z) - Mutual Information as Intrinsic Reward of Reinforcement Learning Agents
for On-demand Ride Pooling [19.247162142334076]
オンデマンドの車両プールサービスにより、各車両は一度に複数の乗客にサービスを提供することができる。
既存のアルゴリズムでは、収益のみを考慮する場合が多いため、異常な配信要求を抱える場合、乗車が困難になる。
本稿では,都市を個別の配車に分割した配車作業のための配車フレームワークを提案し,これらの地域での配車に強化学習(RL)アルゴリズムを用いる。
論文 参考訳(メタデータ) (2023-12-23T08:34:52Z) - Fair collaborative vehicle routing: A deep multi-agent reinforcement
learning approach [49.00137468773683]
協力的な車両ルーティングは、キャリアがそれぞれの輸送要求を共有し、互いに代表して輸送要求を実行することで協力するときに発生する。
従来のゲーム理論解の概念は、特性関数がエージェントの数とともに指数関数的にスケールするので、計算に費用がかかる。
我々は,この問題を,深層マルチエージェント強化学習を用いて解決した連立交渉ゲームとしてモデル化することを提案する。
論文 参考訳(メタデータ) (2023-10-26T15:42:29Z) - A Machine-Learned Ranking Algorithm for Dynamic and Personalised Car
Pooling Services [7.476901945542385]
カープールサービスのレコメンデーションシステムであるGoTogetherを提案する。
GoTogetherは、提案された試合の成功率を最大化するために、推奨乗車数のリストを構築している。
提案手法の性能をテストするために,Twitter や Foursquare の情報源から得られた実データを利用する。
論文 参考訳(メタデータ) (2023-07-06T09:25:38Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
歩行者と自転車の軌跡のデータセットであるEuro-PVIを提案する。
本研究では,都市環境におけるエージェント間のマルチモーダル共有潜在空間を表現的に学習する共同推論モデルを開発する。
我々は,エゴ車と歩行者(自転車)の相互作用を正確に予測するために捉えることの重要性を示すnuScenesとEuro-PVIデータセット上での成果を達成した。
論文 参考訳(メタデータ) (2021-06-22T15:40:21Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
DiDi、Uber、Lyftなどの大型配車プラットフォームは、都市内の数万台の車両を1日中数百万の乗車要求に接続している。
両課題に対処するための統合価値に基づく動的学習フレームワーク(V1D3)を提案する。
論文 参考訳(メタデータ) (2021-05-18T19:22:24Z) - H-TD2: Hybrid Temporal Difference Learning for Adaptive Urban Taxi
Dispatch [9.35511513240868]
H-TD2はモデルフリーで適応的な意思決定アルゴリズムであり、動的な都市環境下で多数の自動タクシーを協調する。
計算複雑性と個別のタクシー政策の限定された部分最適化とのトレードオフを明示的に制御するために、2つの行動の間のトリガ条件を記述・規定する。
最近の強化学習ディスパッチ法とは異なり、このポリシ推定はトレーニング外ドメインイベントに適応し、堅牢である。
論文 参考訳(メタデータ) (2021-05-05T15:42:31Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Equilibrium Inverse Reinforcement Learning for Ride-hailing Vehicle
Network [1.599072005190786]
疎結合グラフにおける客車マッチングの問題を定式化する。
マルチエージェント環境における平衡ポリシを導出するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-13T03:18:44Z) - Dynamic Bicycle Dispatching of Dockless Public Bicycle-sharing Systems
using Multi-objective Reinforcement Learning [79.61517670541863]
ドッキングレスPBS(DL-PBS)に欠かせない動的自転車レンタル需要に基づく効率的な自転車配車ソリューションを実現するためのAIの活用
DL-PBSに最適な自転車ディスパッチソリューションを提供するために、マルチオブジェクト強化学習(MORL-BD)に基づく動的自転車ディスパッチアルゴリズムを提案します。
論文 参考訳(メタデータ) (2021-01-19T03:09:51Z) - A Distributed Model-Free Ride-Sharing Approach for Joint Matching,
Pricing, and Dispatching using Deep Reinforcement Learning [32.0512015286512]
我々は、動的で需要に敏感で、価格に基づく車両通行者マッチングとルート計画フレームワークを提案する。
我々の枠組みはニューヨーク市税のデータセットを用いて検証されている。
実験の結果,実時間および大規模設定におけるアプローチの有効性が示された。
論文 参考訳(メタデータ) (2020-10-05T03:13:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。