論文の概要: End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2104.13617v1
- Date: Wed, 28 Apr 2021 07:54:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-29 12:55:52.382423
- Title: End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning
- Title(参考訳): 多エージェント深部強化学習を用いた終端区間ハンドリング
- Authors: Alessandro Paolo Capasso, Paolo Maramotti, Anthony Dell'Eva, Alberto
Broggi
- Abstract要約: 交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
- 参考スコア(独自算出の注目度): 63.56464608571663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Navigating through intersections is one of the main challenging tasks for an
autonomous vehicle. However, for the majority of intersections regulated by
traffic lights, the problem could be solved by a simple rule-based method in
which the autonomous vehicle behavior is closely related to the traffic light
states. In this work, we focus on the implementation of a system able to
navigate through intersections where only traffic signs are provided. We
propose a multi-agent system using a continuous, model-free Deep Reinforcement
Learning algorithm used to train a neural network for predicting both the
acceleration and the steering angle at each time step. We demonstrate that
agents learn both the basic rules needed to handle intersections by
understanding the priorities of other learners inside the environment, and to
drive safely along their paths. Moreover, a comparison between our system and a
rule-based method proves that our model achieves better results especially with
dense traffic conditions. Finally, we test our system on real world scenarios
using real recorded traffic data, proving that our module is able to generalize
both to unseen environments and to different traffic conditions.
- Abstract(参考訳): 交差点を通ることは、自動運転車にとって大きな課題の一つだ。
しかし、信号機によって規制される交差点の大半については、自動運転車の挙動が信号機の状態と密接に関連している単純なルールベースの方法によって解決できる。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本稿では,ニューラルネットワークの学習に用いた連続モデルフリー深層強化学習アルゴリズムを用いて,各時間ステップにおける加速度と操舵角度の両方を予測するマルチエージェントシステムを提案する。
エージェントは,環境内の他の学習者の優先度を理解し,その経路に沿って安全に運転することにより,交差点を扱うために必要な基本的なルールを学習できることを実証する。
さらに,本モデルとルールベース手法との比較により,特に密集した交通状況において,より良好な結果が得られることを示す。
最後に、実際の交通データを用いて実世界のシナリオでテストを行い、モジュールが見えない環境と異なる交通条件の両方に一般化できることを実証した。
関連論文リスト
- A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Traffic Management of Autonomous Vehicles using Policy Based Deep
Reinforcement Learning and Intelligent Routing [0.26249027950824505]
本稿では,交差点の混雑状況に応じて交通信号を調整するDRLに基づく信号制御システムを提案する。
交差点の後方の道路での渋滞に対処するため,道路ネットワーク上で車両のバランスをとるために再ルート手法を用いた。
論文 参考訳(メタデータ) (2022-06-28T02:46:20Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
データ駆動シミュレータは、ポリシー学習の駆動に高いデータ効率を約束する。
小さな基盤となるデータセットは、インタラクティブな運転を学ぶための興味深い、挑戦的なエッジケースを欠いていることが多い。
本研究では,ロバストな運転方針の学習に塗装されたアドカーを用いたシミュレーション手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T20:14:02Z) - Reinforcement Learning for Mixed Autonomy Intersections [4.771833920251869]
シミュレーショントラフィックネットワークにおける混合自律性トラフィックを制御するためのモデルフリー強化学習手法を提案する。
本手法は,任意の数の制御車両に対して,局所的な観測に基づく分散制御が可能なマルチエージェントポリシー分解を利用する。
論文 参考訳(メタデータ) (2021-11-08T18:03:18Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Integrated Decision and Control at Multi-Lane Intersections with Mixed
Traffic Flow [6.233422723925688]
本稿では,混在交通流を伴う複雑な交差点を扱うための学習に基づくアルゴリズムを提案する。
まず、学習過程における緑と赤の異なる速度モデルについて検討し、有限状態マシンを用いて異なるモードの光変換を扱う。
次に, 車両, 信号機, 歩行者, 自転車にそれぞれ異なる種類の距離制約を設計し, 制約された最適制御問題をフォーミュレートする。
論文 参考訳(メタデータ) (2021-08-30T07:55:32Z) - Courteous Behavior of Automated Vehicles at Unsignalized Intersections
via Reinforcement Learning [30.00761722505295]
深層強化学習を用いた混在交通状況における交差点における交通流の最適化手法を提案する。
我々の強化学習エージェントは、信号のない交差点で接続された自動運転車が道路の権利を放棄し、交通の流れを最適化するために他の車両に利する、集中型制御器のポリシーを学習する。
論文 参考訳(メタデータ) (2021-06-11T13:16:48Z) - Autonomous Navigation through intersections with Graph
ConvolutionalNetworks and Conditional Imitation Learning for Self-driving
Cars [10.080958939027363]
自動運転では、信号のない交差点を通るナビゲーションは難しい作業だ。
ナビゲーションポリシー学習のための新しい分岐ネットワークG-CILを提案する。
エンドツーエンドのトレーニング可能なニューラルネットワークは、より高い成功率と短いナビゲーション時間でベースラインを上回っています。
論文 参考訳(メタデータ) (2021-02-01T07:33:12Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
疎結合グラフの学習値に基づいてマルチエージェントルーティングを行うことができるグラフニューラルネットワークに基づくモデルを提案する。
最大25ノードのグラフ上で2つのエージェントでトレーニングしたモデルでは,より多くのエージェントやノードを持つ状況に容易に一般化できることが示されている。
論文 参考訳(メタデータ) (2020-07-09T22:16:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。