論文の概要: Black Magic in Deep Learning: How Human Skill Impacts Network Training
- arxiv url: http://arxiv.org/abs/2008.05981v1
- Date: Thu, 13 Aug 2020 15:56:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-30 23:30:55.075386
- Title: Black Magic in Deep Learning: How Human Skill Impacts Network Training
- Title(参考訳): 深層学習におけるブラックマジック : 人間のスキルがネットワークトレーニングに与える影響
- Authors: Kanav Anand, Ziqi Wang, Marco Loog, Jan van Gemert
- Abstract要約: 経験の異なる31名の被験者を対象に,初回調査を行った。
その結果,参加者の経験と最終成績との間には強い正の相関が認められた。
- 参考スコア(独自算出の注目度): 24.802914836352738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How does a user's prior experience with deep learning impact accuracy? We
present an initial study based on 31 participants with different levels of
experience. Their task is to perform hyperparameter optimization for a given
deep learning architecture. The results show a strong positive correlation
between the participant's experience and the final performance. They
additionally indicate that an experienced participant finds better solutions
using fewer resources on average. The data suggests furthermore that
participants with no prior experience follow random strategies in their pursuit
of optimal hyperparameters. Our study investigates the subjective human factor
in comparisons of state of the art results and scientific reproducibility in
deep learning.
- Abstract(参考訳): 深層学習におけるユーザの事前経験は,どのように影響するか?
経験の異なる31名の被験者を対象に最初の研究を行った。
彼らのタスクは、所定のディープラーニングアーキテクチャに対してハイパーパラメータ最適化を実行することである。
その結果,参加者の経験と最終評価との間に強い正の相関が認められた。
さらに、経験豊富な参加者が平均してリソースを少なくすることで、より良いソリューションを見つけることも示している。
さらに,事前経験のない参加者が最適なハイパーパラメータの追求においてランダムな戦略に従うことを示唆する。
本研究は,深層学習における技術結果と科学的再現性の比較において,主観的要因について検討する。
関連論文リスト
- "Give Me an Example Like This": Episodic Active Reinforcement Learning from Demonstrations [3.637365301757111]
専門家デモ(RLED)からの強化学習(Reinforcement Learning from Expert Demonstrations)のような手法は、学習プロセス中のエージェント探索を促進するために外部の専門家によるデモンストレーションを導入します。
学習にとって最も有益な人間のデモのベストセットをどうやって選ぶかが、大きな関心事になります。
本稿では,学習エージェントが軌跡に基づく特徴空間において,専門家による実演を最適化したクエリを生成できるアルゴリズムEARLYを提案する。
論文 参考訳(メタデータ) (2024-06-05T08:52:21Z) - On (Mis)perceptions of testing effectiveness: an empirical study [1.8026347864255505]
本研究の目的は, 異なる手法の欠陥検出の有効性の認識が, 先行経験の欠如において, 実際の有効性とどの程度一致しているかを明らかにすることである。
本研究は,2つのテスト手法とコードレビュー手法を適用した学生を対象に,制御実験を行った。
実験の最後には、どのテクニックが最も効果的かを調べる調査が行われた。
再現された研究の結果は、元の研究の結果を確認し、参加者の認識は、テクニックの複雑さや嗜好についての意見ではなく、そのテクニックを適用したと考えることについての意見に基づいているかもしれないことを示唆している。
論文 参考訳(メタデータ) (2024-02-11T14:50:01Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - The Impact of Expertise in the Loop for Exploring Machine Rationality [35.26871426747907]
専門知識のレベルが結果の質とそれに対応する主観的満足度に与える影響を分析した。
初心者は、品質パフォーマンスのエキスパートレベルを達成できるが、より高い専門知識を持つ参加者は、より明確な選好で、より多くの最適化を行うことができた。
論文 参考訳(メタデータ) (2023-02-11T11:53:55Z) - Personalizing Intervened Network for Long-tailed Sequential User
Behavior Modeling [66.02953670238647]
タイルユーザーは、共同トレーニング後のヘッドユーザーよりも大幅に品質の低いレコメンデーションに悩まされる。
テールユーザーで個別に訓練されたモデルは、限られたデータのために依然として劣った結果が得られる。
本稿では,テールユーザの推薦性能を大幅に向上させる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T02:50:19Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
逆強化学習(IRL) - エージェントの報酬関数をその振る舞いを観察することから推測する。
本稿では、エージェントの報酬関数を観察することのできないIRLの問題に対処する。
論文 参考訳(メタデータ) (2022-08-09T17:29:49Z) - Improving Human Sequential Decision-Making with Reinforcement Learning [29.334511328067777]
トレースデータから"ベストプラクティス"を抽出できる新しい機械学習アルゴリズムを設計する。
我々のアルゴリズムは、労働者の行動と最適な政策によって取られた行動のギャップを最もうまく埋めるヒントを選択する。
実験の結果,提案アルゴリズムが生成したチップは人体の性能を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-08-19T02:57:58Z) - Bayesian Active Learning for Wearable Stress and Affect Detection [0.7106986689736827]
デバイス上での深層学習アルゴリズムによるストレス検出は、広汎なコンピューティングの進歩により増加傾向にある。
本稿では,ベイズニューラルネットワークの近似によるモデル不確実性を表現可能なフレームワークを提案する。
提案手法は, 提案手法により, 推定時の効率を著しく向上し, 獲得したプール点数がかなり少なくなる。
論文 参考訳(メタデータ) (2020-12-04T16:19:37Z) - Revisiting Fundamentals of Experience Replay [91.24213515992595]
本稿では,Q-ラーニング手法における経験リプレイの体系的および広範囲な分析について述べる。
我々は、リプレイ能力と、収集した経験に対する学習更新率の2つの基本特性に焦点を当てた。
論文 参考訳(メタデータ) (2020-07-13T21:22:17Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z) - Fine-Tuning Pretrained Language Models: Weight Initializations, Data
Orders, and Early Stopping [62.78338049381917]
教師付き下流タスクのための微調整済み文脈単語埋め込みモデルは、自然言語処理において一般的なものとなっている。
GLUEベンチマークから得られた4つのデータセットを実験し、無作為な種だけを変えながら、それぞれに数百回微調整されたBERTを実験した。
これまでに報告した結果と比較すると,性能が大幅に向上し,微調整試行回数の関数としてベストファウンドモデルの性能がどう変化するかが定量化される。
論文 参考訳(メタデータ) (2020-02-15T02:40:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。