OR-Gym: A Reinforcement Learning Library for Operations Research
Problems
- URL: http://arxiv.org/abs/2008.06319v2
- Date: Sat, 17 Oct 2020 11:58:49 GMT
- Title: OR-Gym: A Reinforcement Learning Library for Operations Research
Problems
- Authors: Christian D. Hubbs and Hector D. Perez and Owais Sarwar and Nikolaos
V. Sahinidis and Ignacio E. Grossmann and John M. Wassick
- Abstract summary: We introduce OR-Gym, an open-source library for developing reinforcement learning algorithms to address operations research problems.
In this paper, we apply reinforcement learning to the knapsack, multi-dimensional bin packing, multi-echelon supply chain, and multi-period asset allocation model problems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) has been widely applied to game-playing and
surpassed the best human-level performance in many domains, yet there are few
use-cases in industrial or commercial settings. We introduce OR-Gym, an
open-source library for developing reinforcement learning algorithms to address
operations research problems. In this paper, we apply reinforcement learning to
the knapsack, multi-dimensional bin packing, multi-echelon supply chain, and
multi-period asset allocation model problems, as well as benchmark the RL
solutions against MILP and heuristic models. These problems are used in
logistics, finance, engineering, and are common in many business operation
settings. We develop environments based on prototypical models in the
literature and implement various optimization and heuristic models in order to
benchmark the RL results. By re-framing a series of classic optimization
problems as RL tasks, we seek to provide a new tool for the operations research
community, while also opening those in the RL community to many of the problems
and challenges in the OR field.
Related papers
- ToolRL: Reward is All Tool Learning Needs [54.16305891389931]
Large Language Models (LLMs) often undergo supervised fine-tuning (SFT) to acquire tool use capabilities.
Recent advancements in reinforcement learning (RL) have demonstrated promising reasoning and generalization abilities.
We present the first comprehensive study on reward design for tool selection and application tasks within the RL paradigm.
arXiv Detail & Related papers (2025-04-16T21:45:32Z) - SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks [110.20297293596005]
Large language model (LLM) agents need to perform multi-turn interactions in real-world tasks.
Existing multi-turn RL algorithms for optimizing LLM agents fail to perform effective credit assignment over multiple turns while leveraging the generalization capabilities of LLMs.
We propose a novel RL algorithm, SWEET-RL, that uses a carefully designed optimization objective to train a critic model with access to additional training-time information.
Our experiments demonstrate that SWEET-RL achieves a 6% absolute improvement in success and win rates on ColBench compared to other state-of-the-art multi-turn RL algorithms.
arXiv Detail & Related papers (2025-03-19T17:55:08Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.
Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.
Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Multi-Agent Environments for Vehicle Routing Problems [1.0179489519625304]
We propose a library composed of multi-agent environments that simulates classic vehicle routing problems.
The library, built on PyTorch, provides a flexible modular architecture design that allows easy customization and incorporation of new routing problems.
arXiv Detail & Related papers (2024-11-21T18:46:23Z) - Transform then Explore: a Simple and Effective Technique for Exploratory Combinatorial Optimization with Reinforcement Learning [11.531786269804707]
We propose a gauge transformation (GT) technique to solve optimization problems (COPs) over graphs.
GT is very simple, which can be implemented with less than 10 lines of Python codes, and can be applied to a vast majority of reinforcement learning models.
We show that traditional RL models with GT technique produce the state-of-the-art performances on the MaxCut problem.
arXiv Detail & Related papers (2024-04-06T15:31:17Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
We develop a framework for building multi-turn RL algorithms for fine-tuning large language models.
Our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel.
Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks.
arXiv Detail & Related papers (2024-02-29T18:45:56Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
Reinforcement learning integrated as a component in the evolutionary algorithm has demonstrated superior performance in recent years.
We discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature.
In the applications of RL-EA section, we also demonstrate the excellent performance of RL-EA on several benchmarks and a range of public datasets.
arXiv Detail & Related papers (2023-08-25T15:06:05Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Deep Policy Iteration with Integer Programming for Inventory Management [8.27175065641495]
We present a framework for optimizing long-term discounted reward problems with large accessible action space and state dependent constraints.
Our proposed Programmable Actor Reinforcement Learning (PARL) uses a deep-policy method that leverages neural networks (NNs) to approximate the value function.
We benchmark the proposed algorithm against state-of-the-art RL algorithms and commonly used replenishments and find it considerably outperforms existing methods by as much as 14.7% on average.
arXiv Detail & Related papers (2021-12-04T01:40:34Z) - REIN-2: Giving Birth to Prepared Reinforcement Learning Agents Using
Reinforcement Learning Agents [0.0]
In this paper, we introduce a meta-learning scheme that shifts the objective of learning to solve a task into the objective of learning to learn to solve a task (or a set of tasks)
Our model, named REIN-2, is a meta-learning scheme formulated within the RL framework, the goal of which is to develop a meta-RL agent that learns how to produce other RL agents.
Compared to traditional state-of-the-art Deep RL algorithms, experimental results show remarkable performance of our model in popular OpenAI Gym environments.
arXiv Detail & Related papers (2021-10-11T10:13:49Z) - A Survey of Reinforcement Learning Algorithms for Dynamically Varying
Environments [1.713291434132985]
Reinforcement learning (RL) algorithms find applications in inventory control, recommender systems, vehicular traffic management, cloud computing and robotics.
Real-world complications of many tasks arising in these domains makes them difficult to solve with the basic assumptions underlying classical RL algorithms.
This paper provides a survey of RL methods developed for handling dynamically varying environment models.
A representative collection of these algorithms is discussed in detail in this work along with their categorization and their relative merits and demerits.
arXiv Detail & Related papers (2020-05-19T09:42:42Z) - Reinforcement Learning for Combinatorial Optimization: A Survey [12.323976053967066]
Many traditional algorithms for solving optimization problems involve using hand-crafteds that sequentially construct a solution.
Reinforcement learning (RL) proposes a good alternative to automate the search of theses by training an agent in a supervised or self-supervised manner.
arXiv Detail & Related papers (2020-03-07T16:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.