Multi-Agent Environments for Vehicle Routing Problems
- URL: http://arxiv.org/abs/2411.14411v1
- Date: Thu, 21 Nov 2024 18:46:23 GMT
- Title: Multi-Agent Environments for Vehicle Routing Problems
- Authors: Ricardo Gama, Daniel Fuertes, Carlos R. del-Blanco, Hugo L. Fernandes,
- Abstract summary: We propose a library composed of multi-agent environments that simulates classic vehicle routing problems.
The library, built on PyTorch, provides a flexible modular architecture design that allows easy customization and incorporation of new routing problems.
- Score: 1.0179489519625304
- License:
- Abstract: Research on Reinforcement Learning (RL) approaches for discrete optimization problems has increased considerably, extending RL to an area classically dominated by Operations Research (OR). Vehicle routing problems are a good example of discrete optimization problems with high practical relevance where RL techniques have had considerable success. Despite these advances, open-source development frameworks remain scarce, hampering both the testing of algorithms and the ability to objectively compare results. This ultimately slows down progress in the field and limits the exchange of ideas between the RL and OR communities. Here we propose a library composed of multi-agent environments that simulates classic vehicle routing problems. The library, built on PyTorch, provides a flexible modular architecture design that allows easy customization and incorporation of new routing problems. It follows the Agent Environment Cycle ("AEC") games model and has an intuitive API, enabling rapid adoption and easy integration into existing reinforcement learning frameworks. The library allows for a straightforward use of classical OR benchmark instances in order to narrow the gap between the test beds for algorithm benchmarking used by the RL and OR communities. Additionally, we provide benchmark instance sets for each environment, as well as baseline RL models and training code.
Related papers
- ODRL: A Benchmark for Off-Dynamics Reinforcement Learning [59.72217833812439]
We introduce ODRL, the first benchmark tailored for evaluating off-dynamics RL methods.
ODRL contains four experimental settings where the source and target domains can be either online or offline.
We conduct extensive benchmarking experiments, which show that no method has universal advantages across varied dynamics shifts.
arXiv Detail & Related papers (2024-10-28T05:29:38Z) - Transform then Explore: a Simple and Effective Technique for Exploratory Combinatorial Optimization with Reinforcement Learning [11.531786269804707]
We propose a gauge transformation (GT) technique to solve optimization problems (COPs) over graphs.
GT is very simple, which can be implemented with less than 10 lines of Python codes, and can be applied to a vast majority of reinforcement learning models.
We show that traditional RL models with GT technique produce the state-of-the-art performances on the MaxCut problem.
arXiv Detail & Related papers (2024-04-06T15:31:17Z) - Spatial-temporal-demand clustering for solving large-scale vehicle
routing problems with time windows [0.0]
We propose a decompose-route-improve (DRI) framework that groups customers using clustering.
Its similarity metric incorporates customers' spatial, temporal, and demand data.
We apply pruned local search (LS) between solved subproblems to improve the overall solution.
arXiv Detail & Related papers (2024-01-20T06:06:01Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Reinforcement Learning for Branch-and-Bound Optimisation using
Retrospective Trajectories [72.15369769265398]
Machine learning has emerged as a promising paradigm for branching.
We propose retro branching; a simple yet effective approach to RL for branching.
We outperform the current state-of-the-art RL branching algorithm by 3-5x and come within 20% of the best IL method's performance on MILPs with 500 constraints and 1000 variables.
arXiv Detail & Related papers (2022-05-28T06:08:07Z) - Hyperparameter Tuning for Deep Reinforcement Learning Applications [0.3553493344868413]
We propose a distributed variable-length genetic algorithm framework to tune hyperparameters for various RL applications.
Our results show that with more generations, optimal solutions that require fewer training episodes and are computationally cheap while being more robust for deployment.
arXiv Detail & Related papers (2022-01-26T20:43:13Z) - CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning [45.52724876199729]
We present CARL, a collection of well-known RL environments extended to contextual RL problems.
We provide first evidence that disentangling representation learning of the states from the policy learning with the context facilitates better generalization.
arXiv Detail & Related papers (2021-10-05T15:04:01Z) - RL-DARTS: Differentiable Architecture Search for Reinforcement Learning [62.95469460505922]
We introduce RL-DARTS, one of the first applications of Differentiable Architecture Search (DARTS) in reinforcement learning (RL)
By replacing the image encoder with a DARTS supernet, our search method is sample-efficient, requires minimal extra compute resources, and is also compatible with off-policy and on-policy RL algorithms, needing only minor changes in preexisting code.
We show that the supernet gradually learns better cells, leading to alternative architectures which can be highly competitive against manually designed policies, but also verify previous design choices for RL policies.
arXiv Detail & Related papers (2021-06-04T03:08:43Z) - OR-Gym: A Reinforcement Learning Library for Operations Research
Problems [0.0]
We introduce OR-Gym, an open-source library for developing reinforcement learning algorithms to address operations research problems.
In this paper, we apply reinforcement learning to the knapsack, multi-dimensional bin packing, multi-echelon supply chain, and multi-period asset allocation model problems.
arXiv Detail & Related papers (2020-08-14T12:21:22Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.