ANDES at SemEval-2020 Task 12: A jointly-trained BERT multilingual model
for offensive language detection
- URL: http://arxiv.org/abs/2008.06408v1
- Date: Thu, 13 Aug 2020 16:07:00 GMT
- Title: ANDES at SemEval-2020 Task 12: A jointly-trained BERT multilingual model
for offensive language detection
- Authors: Juan Manuel P\'erez, Aym\'e Arango, Franco Luque
- Abstract summary: We jointly-trained a single model by fine-tuning Multilingual BERT to tackle the task across all the proposed languages.
Our single model had competitive results, with a performance close to top-performing systems.
- Score: 0.6445605125467572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes our participation in SemEval-2020 Task 12: Multilingual
Offensive Language Detection. We jointly-trained a single model by fine-tuning
Multilingual BERT to tackle the task across all the proposed languages:
English, Danish, Turkish, Greek and Arabic. Our single model had competitive
results, with a performance close to top-performing systems in spite of sharing
the same parameters across all languages. Zero-shot and few-shot experiments
were also conducted to analyze the transference performance among these
languages. We make our code public for further research
Related papers
- Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations [59.056367787688146]
This paper pioneers exploring and training powerful Multilingual Math Reasoning (xMR) LLMs.
We construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
By utilizing translation, we construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
arXiv Detail & Related papers (2023-10-31T08:09:20Z) - Revisiting non-English Text Simplification: A Unified Multilingual
Benchmark [14.891068432456262]
This paper introduces the MultiSim benchmark, a collection of 27 resources in 12 distinct languages containing over 1.7 million complex-simple sentence pairs.
Our experiments using MultiSim with pre-trained multilingual language models reveal exciting performance improvements from multilingual training in non-English settings.
arXiv Detail & Related papers (2023-05-25T03:03:29Z) - ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text
Translation [79.66359274050885]
We present ComSL, a speech-language model built atop a composite architecture of public pretrained speech-only and language-only models.
Our approach has demonstrated effectiveness in end-to-end speech-to-text translation tasks.
arXiv Detail & Related papers (2023-05-24T07:42:15Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - Handshakes AI Research at CASE 2021 Task 1: Exploring different
approaches for multilingual tasks [0.22940141855172036]
The aim of the CASE 2021 Shared Task 1 was to detect and classify socio-political and crisis event information in a multilingual setting.
Our submission contained entries in all of the subtasks, and the scores obtained validated our research finding.
arXiv Detail & Related papers (2021-10-29T07:58:49Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z) - UPB at SemEval-2020 Task 12: Multilingual Offensive Language Detection
on Social Media by Fine-tuning a Variety of BERT-based Models [0.0]
This paper describes our Transformer-based solutions for identifying offensive language on Twitter in five languages.
It was employed in Subtask A of the Offenseval 2020 shared task.
arXiv Detail & Related papers (2020-10-26T14:28:29Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
We create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages.
We build and open source a training dataset that covers thousands of language directions with supervised data, created through large-scale mining.
Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively to the best single systems of WMT.
arXiv Detail & Related papers (2020-10-21T17:01:23Z) - KEIS@JUST at SemEval-2020 Task 12: Identifying Multilingual Offensive
Tweets Using Weighted Ensemble and Fine-Tuned BERT [2.105564340986074]
This research presents our team KEIS@JUST participation at SemEval-2020 Task 12 which represents shared task on multilingual offensive language.
Two main approaches have been developed the first is performed to tackle both languages Arabic and English, a weighted ensemble consists of Bi-GRU and CNN.
The second is performed for other languages, a transfer learning from BERT beside the recurrent neural networks such as Bi-LSTM and Bi-GRU.
arXiv Detail & Related papers (2020-05-15T23:11:03Z) - LIIR at SemEval-2020 Task 12: A Cross-Lingual Augmentation Approach for
Multilingual Offensive Language Identification [19.23116755449024]
We adapt and fine-tune the BERT and Multilingual Bert models made available by Google AI for English and non-English languages respectively.
For the English language, we use a combination of two fine-tuned BERT models.
For other languages we propose a cross-lingual augmentation approach in order to enrich training data and we use Multilingual BERT to obtain sentence representations.
arXiv Detail & Related papers (2020-05-07T18:45:48Z) - Kungfupanda at SemEval-2020 Task 12: BERT-Based Multi-Task Learning for
Offensive Language Detection [55.445023584632175]
We build an offensive language detection system, which combines multi-task learning with BERT-based models.
Our model achieves 91.51% F1 score in English Sub-task A, which is comparable to the first place.
arXiv Detail & Related papers (2020-04-28T11:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.