論文の概要: Abstracting Deep Neural Networks into Concept Graphs for Concept Level
Interpretability
- arxiv url: http://arxiv.org/abs/2008.06457v2
- Date: Tue, 17 Nov 2020 07:12:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-30 16:37:17.929284
- Title: Abstracting Deep Neural Networks into Concept Graphs for Concept Level
Interpretability
- Title(参考訳): 概念レベル解釈のための概念グラフへのディープニューラルネットワークの抽象化
- Authors: Avinash Kori, Parth Natekar, Ganapathy Krishnamurthi, Balaji
Srinivasan
- Abstract要約: 我々は,学習した概念のグラフィカルな表現を構築することで,医療領域における画像処理タスクを実行する訓練されたモデルの振る舞いを理解することを試みる。
本稿では,脳腫瘍の分節化と基底画像の分類という2つの生体医学的問題に対する提案手法の適用について述べる。
- 参考スコア(独自算出の注目度): 0.39635467316436124
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The black-box nature of deep learning models prevents them from being
completely trusted in domains like biomedicine. Most explainability techniques
do not capture the concept-based reasoning that human beings follow. In this
work, we attempt to understand the behavior of trained models that perform
image processing tasks in the medical domain by building a graphical
representation of the concepts they learn. Extracting such a graphical
representation of the model's behavior on an abstract, higher conceptual level
would unravel the learnings of these models and would help us to evaluate the
steps taken by the model for predictions. We show the application of our
proposed implementation on two biomedical problems - brain tumor segmentation
and fundus image classification. We provide an alternative graphical
representation of the model by formulating a concept level graph as discussed
above, which makes the problem of intervention to find active inference trails
more tractable. Understanding these trails would provide an understanding of
the hierarchy of the decision-making process followed by the model. [As well as
overall nature of model]. Our framework is available at
https://github.com/koriavinash1/BioExp
- Abstract(参考訳): 深層学習モデルのブラックボックスの性質は、バイオメディシンのような領域で完全に信頼されることを防ぐ。
ほとんどの説明可能性のテクニックは、人間が従う概念に基づく推論を捉えない。
本研究では,医療領域で画像処理タスクを行うトレーニングモデルの振る舞いを,学習する概念の図式表現を構築して理解することを試みる。
このような抽象的な概念レベルでのモデル行動のグラフィカルな表現を抽出すると、これらのモデルの学習が明らかになり、予測のためにモデルによって取られたステップを評価するのに役立ちます。
本稿では,脳腫瘍の分節化と基底画像の分類という2つの生体医学的問題に対する提案手法の適用について述べる。
上記のように概念レベルのグラフを定式化することで、モデルに代替的なグラフィカルな表現を提供する。
これらのトレイルを理解することは、モデルに続く意思決定プロセスの階層を理解させるだろう。
[模型の全体的性質と同様に]
私たちのフレームワークはhttps://github.com/koriavinash1/BioExpで利用可能です。
関連論文リスト
- Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
自然の高次元データから学習する概念は、ヒューマンアライメントと解釈可能な機械学習モデルの構築の可能性を秘めている。
我々は概念を階層的因果モデルを通して関連付けられた離散潜在因果変数として定式化する。
我々は、理論的な主張を合成データ実験で裏付ける。
論文 参考訳(メタデータ) (2024-06-01T18:01:03Z) - Automatic Discovery of Visual Circuits [66.99553804855931]
本稿では,視覚モデルにおける視覚的概念の認識の基盤となる計算グラフのサブグラフを抽出するスケーラブルな手法について検討する。
提案手法は, モデル出力に因果的に影響を及ぼす回路を抽出し, これらの回路を編集することで, 敵攻撃から大きな事前学習モデルを守ることができることがわかった。
論文 参考訳(メタデータ) (2024-04-22T17:00:57Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
基礎モデルがグラフ機械学習研究者を一般化し、適応させる能力は、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Concept backpropagation: An Explainable AI approach for visualising
learned concepts in neural network models [0.0]
本稿では,ある概念を表す情報が与えられたニューラルネットワークモデルにどのように内在化されているかを分析する方法として,Emphconcept backpropagationという概念検出手法の拡張を提案する。
論文 参考訳(メタデータ) (2023-07-24T08:21:13Z) - Hierarchical Semantic Tree Concept Whitening for Interpretable Image
Classification [19.306487616731765]
ポストホック分析は、モデルに自然に存在するパターンやルールのみを発見することができる。
我々は、隠された層における人間の理解可能な概念の表現を変えるために、積極的に知識を注入する。
本手法は,モデル分類性能に悪影響を及ぼすことなく,セマンティックな概念の絡み合いを良くし,モデルの解釈可能性を向上させる。
論文 参考訳(メタデータ) (2023-07-10T04:54:05Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Feature visualization for convolutional neural network models trained on
neuroimaging data [0.0]
畳み込みニューラルネットワーク(CNN)の機能可視化による最初の結果を示す。
我々は、MRIデータに基づく性分類や人為的病変分類など、さまざまなタスクのためにCNNを訓練した。
得られた画像は、その形状を含む人工的な病変の学習概念を明らかにするが、性分類タスクにおける抽象的な特徴を解釈することは困難である。
論文 参考訳(メタデータ) (2022-03-24T15:24:38Z) - Going Beyond Saliency Maps: Training Deep Models to Interpret Deep
Models [16.218680291606628]
解釈性は、複雑な深層学習モデルを用いて脳障害の理解を進める上で重要な要素である。
疾患のパターンを注入または除去するために、与えられたイメージを歪めることができるシミュレーターネットワークを訓練することを提案する。
本研究は,アルツハイマー病とアルコール使用障害の影響を可視化するために,合成データセットと2つのニューロイメージングデータセットで訓練された分類器の解釈に応用する。
論文 参考訳(メタデータ) (2021-02-16T15:57:37Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。