AirDnD -- Asynchronous In-Range Dynamic and Distributed Network Orchestration Framework
- URL: http://arxiv.org/abs/2407.10500v1
- Date: Mon, 15 Jul 2024 07:43:56 GMT
- Title: AirDnD -- Asynchronous In-Range Dynamic and Distributed Network Orchestration Framework
- Authors: Malsha Ashani Mahawatta Dona, Christian Berger, Yinan Yu,
- Abstract summary: This research aims to improve and utilize the usage of computing resources in distributed edge devices by forming a dynamic mesh network.
The proposed solution consists of three models that transform growing amounts of geographically distributed edge devices into a living organism.
- Score: 1.8590097948961688
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The increasing usage of IoT devices has generated an extensive volume of data which resulted in the establishment of data centers with well-structured computing infrastructure. Reducing underutilized resources of such data centers can be achieved by monitoring the tasks and offloading them across various compute units. This approach can also be used in mini mobile data ponds generated by edge devices and smart vehicles. This research aims to improve and utilize the usage of computing resources in distributed edge devices by forming a dynamic mesh network. The nodes in the mesh network shall share their computing tasks with another node that possesses unused computing resources. This proposed method ensures the minimization of data transfer between entities. The proposed AirDnD vision will be applied to a practical scenario relevant to an autonomous vehicle that approaches an intersection commonly known as ``looking around the corner'' in related literature, collecting essential computational results from nearby vehicles to enhance its perception. The proposed solution consists of three models that transform growing amounts of geographically distributed edge devices into a living organism.
Related papers
- Bringing AI to the edge: A formal M&S specification to deploy effective
IoT architectures [0.0]
The Internet of Things is transforming our society, providing new services that improve the quality of life and resource management.
These applications are based on ubiquitous networks of multiple distributed devices, with limited computing resources and power.
New architectures such as fog computing are emerging to bring computing infrastructure closer to data sources.
arXiv Detail & Related papers (2023-05-11T21:29:58Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Multi-Agent Deep Reinforcement Learning enabled Computation Resource
Allocation in a Vehicular Cloud Network [30.736512922808362]
We investigate the computational resource allocation problem in a distributed Ad-Hoc vehicular network with no centralized infrastructure support.
To overcome the dilemma of lacking a real central control unit in VCN, the allocation is completed on the vehicles in a distributed manner.
arXiv Detail & Related papers (2020-08-14T17:02:24Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Federated Learning with Cooperating Devices: A Consensus Approach for
Massive IoT Networks [8.456633924613456]
Federated learning (FL) is emerging as a new paradigm to train machine learning models in distributed systems.
The paper proposes a fully distributed (or server-less) learning approach: the proposed FL algorithms leverage the cooperation of devices that perform data operations inside the network.
The approach lays the groundwork for integration of FL within 5G and beyond networks characterized by decentralized connectivity and computing.
arXiv Detail & Related papers (2019-12-27T15:16:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.