論文の概要: ALONE: A Dataset for Toxic Behavior among Adolescents on Twitter
- arxiv url: http://arxiv.org/abs/2008.06465v1
- Date: Fri, 14 Aug 2020 17:02:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-06 07:01:15.367552
- Title: ALONE: A Dataset for Toxic Behavior among Adolescents on Twitter
- Title(参考訳): ALONE:Twitter上の若者の有害行動に関するデータセット
- Authors: Thilini Wijesiriwardene, Hale Inan, Ugur Kursuncu, Manas Gaur, Valerie
L. Shalin, Krishnaprasad Thirunarayan, Amit Sheth, I. Budak Arpinar
- Abstract要約: 本稿では,ALONE(AdoLescents ON twittEr)と呼ばれる,高校生間の有害なソーシャルメディアインタラクションのデータセットを提供する。
インターネット利用者の66%近くがオンラインハラスメントを経験しており、41%が個人的体験を主張しており、18%が深刻なオンラインハラスメントに直面している。
我々の観察では、個々のツイートが有害な行動を示す十分な証拠を提供していないことが示されており、インタラクションにおける意味のあるコンテキストの利用により、報告された有害性のあるツイートをハイライトしたり削除したりすることが可能である。
- 参考スコア(独自算出の注目度): 5.723363140737726
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The convenience of social media has also enabled its misuse, potentially
resulting in toxic behavior. Nearly 66% of internet users have observed online
harassment, and 41% claim personal experience, with 18% facing severe forms of
online harassment. This toxic communication has a significant impact on the
well-being of young individuals, affecting mental health and, in some cases,
resulting in suicide. These communications exhibit complex linguistic and
contextual characteristics, making recognition of such narratives challenging.
In this paper, we provide a multimodal dataset of toxic social media
interactions between confirmed high school students, called ALONE (AdoLescents
ON twittEr), along with descriptive explanation. Each instance of interaction
includes tweets, images, emoji and related metadata. Our observations show that
individual tweets do not provide sufficient evidence for toxic behavior, and
meaningful use of context in interactions can enable highlighting or
exonerating tweets with purported toxicity.
- Abstract(参考訳): ソーシャルメディアの利便性も悪用を可能にし、潜在的に有害な行動を引き起こす可能性がある。
インターネット利用者の66%近くがオンラインハラスメントを経験しており、41%が個人的体験を主張しており、18%が深刻なオンラインハラスメントに直面している。
この有毒なコミュニケーションは若い人々の幸福に重大な影響を与え、精神的な健康に影響を与え、場合によっては自殺を引き起こす。
これらのコミュニケーションは複雑な言語的特徴と文脈的特徴を示し、そのような物語の認識を困難にしている。
本稿では,ALONE(AdoLescents ON twittEr)と呼ばれる高校生間の有害なソーシャルメディアインタラクションのマルチモーダルデータセットと説明的説明を提供する。
対話の各インスタンスには、ツイート、画像、絵文字、関連するメタデータが含まれる。
我々の観察では、個々のツイートは有害な行動の十分な証拠を提供しておらず、対話におけるコンテキストの有意義な使用は、有害性が示唆されたツイートをハイライトしたり、否定したりすることができる。
関連論文リスト
- Characterizing Online Toxicity During the 2022 Mpox Outbreak: A Computational Analysis of Topical and Network Dynamics [0.9831489366502301]
2022年のムポックスの流行は、当初は「モンキーポックス」と呼ばれていたが、その後、関連するスティグマや社会的懸念を緩和するために改名された。
我々は660万以上のユニークツイートを収集し、コンテキスト、範囲、コンテンツ、話者、意図といった5つの次元から分析しました。
我々は、Twitter上での有害なオンライン談話(46.6%)、病気(46.6%)、健康政策と医療(19.3%)、ホモフォビア(23.9%)、政治など、高レベルのトピックを5つ特定した。
有毒なコンテンツのリツイートが広まっていたのに対して、影響力のあるユーザはリツイートを通じてこの有毒な行為に関わったり、反対したりすることはめったにない。
論文 参考訳(メタデータ) (2024-08-21T19:31:01Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Understanding the Bystander Effect on Toxic Twitter Conversations [1.1339580074756188]
会話における有害なツイートに対する最初の直接応答の毒性が、その後の応答に対するグループ規範を確立しているかどうかを検討する。
9kの会話に属する156k以上のツイートのランダムなサンプルを分析した。
論文 参考訳(メタデータ) (2022-11-19T18:31:39Z) - User Engagement and the Toxicity of Tweets [1.1339580074756188]
我々は85,300件以上のTwitter会話のランダムなサンプルを分析し、有毒な会話と非有毒な会話の違いを調べる。
有毒な会話(少なくとも1つの有毒なツイートを持つ会話)は、長いが、無害な会話に比べて、個人ユーザーが会話に貢献する割合は少ない。
また、有害なツイートに対する最初の応答の毒性と会話の毒性との関係も調べる。
論文 参考訳(メタデータ) (2022-11-07T20:55:22Z) - Twitter Users' Behavioral Response to Toxic Replies [1.2387676601792899]
我々は,Twitter上でのユーザのオンライン行動に及ぼす毒性の影響を検討した。
毒性の犠牲者は, 回避, 復讐, 対策, 交渉といった行動反応の組合せがみられた。
本研究は, ソーシャルメディア上での毒性の負の結果を低減するための, より効果的な検出・介入手法の開発において, さらなる研究を支援することができる。
論文 参考訳(メタデータ) (2022-10-24T17:36:58Z) - A deep dive into the consistently toxic 1% of Twitter [9.669275987983447]
この調査は、112万のTwitterプロフィールから14年間のツイートと2億2300万以上のツイートをカバーしている。
有害なコンテンツの一貫性の観点から最も極端なプロファイルを選択し、彼らのツイートテキストと、彼らが共有したドメイン、ハッシュタグ、URLを調べました。
その結果、これらのプロファイルはハッシュタグ、URL、ドメインの多様性の低い狭いテーマに保たれており、数学的に互いに似ており、ボットのような振る舞いの可能性が高いことがわかった。
論文 参考訳(メタデータ) (2022-02-16T04:21:48Z) - Annotators with Attitudes: How Annotator Beliefs And Identities Bias
Toxic Language Detection [75.54119209776894]
本研究では,アノテータのアイデンティティ(誰)と信念(なぜ)が有害な言語アノテーションに与える影響について検討する。
我々は、アンチブラック言語、アフリカ系アメリカ人の英語方言、俗語という3つの特徴を持つポストを考察する。
以上の結果から,アノテータのアイデンティティと信念と毒性評価の相関が強く示唆された。
論文 参考訳(メタデータ) (2021-11-15T18:58:20Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
我々は、ユーザーがフェイクニュースを共有するのに、ユーザー属性が何をもたらすかを理解することが重要だと論じている。
偽ニュース拡散において、共同創設者は、本質的にユーザー属性やオンライン活動に関連する偽ニュース共有行動によって特徴づけられる。
本稿では,偽ニュース拡散における選択バイアスを軽減するための原則的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-20T19:37:04Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
新型コロナウイルスは、アジアのコミュニティをターゲットにしたソーシャルメディア上で人種差別や憎悪を引き起こしている。
我々は、Twitterのレンズを通して、反アジアヘイトスピーチの進化と普及について研究する。
私たちは、14ヶ月にわたる反アジア的憎悪と反音声のデータセットとして最大となるCOVID-HATEを作成します。
論文 参考訳(メタデータ) (2020-05-25T21:58:09Z) - #MeToo on Campus: Studying College Sexual Assault at Scale Using Data
Reported on Social Media [71.74529365205053]
我々は、#トレンドが大学フォロワーのプールに与える影響を分析した。
その結果、これらの#ツイートに埋め込まれたトピックの大部分は、セクシャルハラスメントのストーリーを詳述している。
この傾向といくつかの主要地理的地域に関する公式な報告との間には大きな相関関係がある。
論文 参考訳(メタデータ) (2020-01-16T18:05:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。