Fast computation of spherical phase-space functions of quantum many-body
states
- URL: http://arxiv.org/abs/2008.06481v1
- Date: Fri, 14 Aug 2020 17:38:01 GMT
- Title: Fast computation of spherical phase-space functions of quantum many-body
states
- Authors: B\'alint Koczor, Robert Zeier, Steffen J. Glaser
- Abstract summary: We focus on phase spaces for finite-dimensional quantum states of single qudits or permutationally symmetric states of multiple qubits.
We present methods to efficiently compute the corresponding phase-space functions which are at least an order of magnitude faster than traditional methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum devices are preparing increasingly more complex entangled quantum
states. How can one effectively study these states in light of their increasing
dimensions? Phase spaces such as Wigner functions provide a suitable framework.
We focus on phase spaces for finite-dimensional quantum states of single qudits
or permutationally symmetric states of multiple qubits. We present methods to
efficiently compute the corresponding phase-space functions which are at least
an order of magnitude faster than traditional methods. Quantum many-body states
in much larger dimensions can now be effectively studied by experimentalists
and theorists using these phase-space techniques.
Related papers
- Multi-stage tomography based on eigenanalysis for high-dimensional dense unitary quantum processes [2.5966580648312223]
Quantum Process Tomography (QPT) methods aim at identifying, i.e. estimating, a quantum process.
We consider unitary, possibly dense (i.e. without sparsity constraints) processes, which corresponds to isolated systems.
We first propose two-stage methods and we then extend them to dichotomic methods, whose number of stages increases with the considered state space dimension.
arXiv Detail & Related papers (2024-07-18T14:18:23Z) - Quantum quench dynamics as a shortcut to adiabaticity [31.114245664719455]
We develop and test a quantum algorithm in which the incorporation of a quench step serves as a remedy to the diverging adiabatic timescale.
Our experiments show that this approach significantly outperforms the adiabatic algorithm.
arXiv Detail & Related papers (2024-05-31T17:07:43Z) - Simulating Gaussian boson sampling quantum computers [68.8204255655161]
We briefly review recent theoretical methods to simulate experimental Gaussian boson sampling networks.
We focus mostly on methods that use phase-space representations of quantum mechanics.
A brief overview of the theory of GBS, recent experiments and other types of methods are also presented.
arXiv Detail & Related papers (2023-08-02T02:03:31Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Quantum Phase Processing and its Applications in Estimating Phase and
Entropies [10.8525801756287]
"quantum phase processing" can directly apply arbitrary trigonometric transformations to eigenphases of a unitary operator.
Quantum phase processing can extract the eigen-information of quantum systems by simply measuring the ancilla qubit.
We propose a new quantum phase estimation algorithm without quantum Fourier transform, which requires the fewest ancilla qubits and matches the best performance so far.
arXiv Detail & Related papers (2022-09-28T17:41:19Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
Many-body localization is a notoriously difficult phenomenon from quantum many-body physics.
We propose a flexible neural network based learning approach that circumvents any computationally expensive step.
Our approach can be applied to large-scale quantum experiments to provide new insights into quantum many-body physics.
arXiv Detail & Related papers (2022-02-17T19:00:09Z) - Quantum jump metrology in a two-cavity network [0.0]
In interferometry, quantum physics is used to enhance measurement precision.
An alternative approach is quantum metrology jump [L. A. Clark et al., Phys A 99, 022102] which deduces information by continuously monitoring an open quantum system.
It is shown that the proposed approach can exceed the standard quantum limit without the need for complex quantum states being scalable.
arXiv Detail & Related papers (2022-01-12T10:53:24Z) - Certification of quantum states with hidden structure of their
bitstrings [0.0]
We propose a numerically cheap procedure to describe and distinguish quantum states.
We show that it is enough to characterize quantum states with different structure of entanglement.
Our approach can be employed to detect phase transitions of different nature in many-body quantum magnetic systems.
arXiv Detail & Related papers (2021-07-21T06:22:35Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.