The reinforcement learning-based multi-agent cooperative approach for
the adaptive speed regulation on a metallurgical pickling line
- URL: http://arxiv.org/abs/2008.06933v2
- Date: Sat, 2 Apr 2022 10:17:44 GMT
- Title: The reinforcement learning-based multi-agent cooperative approach for
the adaptive speed regulation on a metallurgical pickling line
- Authors: Anna Bogomolova, Kseniia Kingsep and Boris Voskresenskii
- Abstract summary: The proposed approach combines mathematical modeling as a base algorithm and a cooperative Multi-Agent Reinforcement Learning system.
We demonstrate how Deep Q-Learning can be applied to a real-life task in a heavy industry, resulting in significant improvement of previously existing automation systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a holistic data-driven approach to the problem of productivity
increase on the example of a metallurgical pickling line. The proposed approach
combines mathematical modeling as a base algorithm and a cooperative
Multi-Agent Reinforcement Learning (MARL) system implemented such as to enhance
the performance by multiple criteria while also meeting safety and reliability
requirements and taking into account the unexpected volatility of certain
technological processes. We demonstrate how Deep Q-Learning can be applied to a
real-life task in a heavy industry, resulting in significant improvement of
previously existing automation systems.The problem of input data scarcity is
solved by a two-step combination of LSTM and CGAN, which helps to embrace both
the tabular representation of the data and its sequential properties. Offline
RL training, a necessity in this setting, has become possible through the
sophisticated probabilistic kinematic environment.
Related papers
- Scalable Offline Reinforcement Learning for Mean Field Games [6.8267158622784745]
Off-MMD is a novel mean-field RL algorithm that approximates equilibrium policies in mean-field games using purely offline data.
Our algorithm scales to complex environments and demonstrates strong performance on benchmark tasks like crowd exploration or navigation.
arXiv Detail & Related papers (2024-10-23T14:16:34Z) - Reinforcement Learning as an Improvement Heuristic for Real-World Production Scheduling [0.0]
One promising approach is to train an RL agent as an improvement, starting with a suboptimal solution that is iteratively improved by applying small changes.
We apply this approach to a real-world multiobjective production scheduling problem.
We benchmarked our approach against other approaches using real data from our industry partner, demonstrating its superior performance.
arXiv Detail & Related papers (2024-09-18T12:48:56Z) - HarmoDT: Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning [72.25707314772254]
We introduce the Harmony Multi-Task Decision Transformer (HarmoDT), a novel solution designed to identify an optimal harmony subspace of parameters for each task.
The upper level of this framework is dedicated to learning a task-specific mask that delineates the harmony subspace, while the inner level focuses on updating parameters to enhance the overall performance of the unified policy.
arXiv Detail & Related papers (2024-05-28T11:41:41Z) - Retentive Decision Transformer with Adaptive Masking for Reinforcement Learning based Recommendation Systems [17.750449033873036]
Reinforcement Learning-based Recommender Systems (RLRS) have shown promise across a spectrum of applications.
Yet, they grapple with challenges, notably in crafting reward functions and harnessing large pre-existing datasets.
Recent advancements in offline RLRS provide a solution for how to address these two challenges.
arXiv Detail & Related papers (2024-03-26T12:08:58Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - A Dirichlet Process Mixture of Robust Task Models for Scalable Lifelong
Reinforcement Learning [11.076005074172516]
reinforcement learning algorithms can easily encounter catastrophic forgetting or interference when faced with lifelong streaming information.
We propose a scalable lifelong RL method that dynamically expands the network capacity to accommodate new knowledge.
We show that our method successfully facilitates scalable lifelong RL and outperforms relevant existing methods.
arXiv Detail & Related papers (2022-05-22T09:48:41Z) - Safe-Critical Modular Deep Reinforcement Learning with Temporal Logic
through Gaussian Processes and Control Barrier Functions [3.5897534810405403]
Reinforcement learning (RL) is a promising approach and has limited success towards real-world applications.
In this paper, we propose a learning-based control framework consisting of several aspects.
We show such an ECBF-based modular deep RL algorithm achieves near-perfect success rates and guard safety with a high probability.
arXiv Detail & Related papers (2021-09-07T00:51:12Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.