Scalable Offline Reinforcement Learning for Mean Field Games
- URL: http://arxiv.org/abs/2410.17898v1
- Date: Wed, 23 Oct 2024 14:16:34 GMT
- Title: Scalable Offline Reinforcement Learning for Mean Field Games
- Authors: Axel Brunnbauer, Julian Lemmel, Zahra Babaiee, Sophie Neubauer, Radu Grosu,
- Abstract summary: Off-MMD is a novel mean-field RL algorithm that approximates equilibrium policies in mean-field games using purely offline data.
Our algorithm scales to complex environments and demonstrates strong performance on benchmark tasks like crowd exploration or navigation.
- Score: 6.8267158622784745
- License:
- Abstract: Reinforcement learning algorithms for mean-field games offer a scalable framework for optimizing policies in large populations of interacting agents. Existing methods often depend on online interactions or access to system dynamics, limiting their practicality in real-world scenarios where such interactions are infeasible or difficult to model. In this paper, we present Offline Munchausen Mirror Descent (Off-MMD), a novel mean-field RL algorithm that approximates equilibrium policies in mean-field games using purely offline data. By leveraging iterative mirror descent and importance sampling techniques, Off-MMD estimates the mean-field distribution from static datasets without relying on simulation or environment dynamics. Additionally, we incorporate techniques from offline reinforcement learning to address common issues like Q-value overestimation, ensuring robust policy learning even with limited data coverage. Our algorithm scales to complex environments and demonstrates strong performance on benchmark tasks like crowd exploration or navigation, highlighting its applicability to real-world multi-agent systems where online experimentation is infeasible. We empirically demonstrate the robustness of Off-MMD to low-quality datasets and conduct experiments to investigate its sensitivity to hyperparameter choices.
Related papers
- COSBO: Conservative Offline Simulation-Based Policy Optimization [7.696359453385686]
offline reinforcement learning allows training reinforcement learning models on data from live deployments.
In contrast, simulation environments attempting to replicate the live environment can be used instead of the live data.
We propose a method that combines an imperfect simulation environment with data from the target environment, to train an offline reinforcement learning policy.
arXiv Detail & Related papers (2024-09-22T12:20:55Z) - Coordination Failure in Cooperative Offline MARL [3.623224034411137]
We focus on coordination failure and investigate the role of joint actions in multi-agent policy gradients with offline data.
By using two-player games as an analytical tool, we demonstrate a simple yet overlooked failure mode of BRUD-based algorithms.
We propose an approach to mitigate such failure, by prioritising samples from the dataset based on joint-action similarity.
arXiv Detail & Related papers (2024-07-01T14:51:29Z) - Preference Elicitation for Offline Reinforcement Learning [59.136381500967744]
We propose Sim-OPRL, an offline preference-based reinforcement learning algorithm.
Our algorithm employs a pessimistic approach for out-of-distribution data, and an optimistic approach for acquiring informative preferences about the optimal policy.
arXiv Detail & Related papers (2024-06-26T15:59:13Z) - SeMOPO: Learning High-quality Model and Policy from Low-quality Offline Visual Datasets [32.496818080222646]
We propose a new approach to model-based offline reinforcement learning.
We provide a theoretical guarantee of model uncertainty and performance bound of SeMOPO.
Experimental results show that our method substantially outperforms all baseline methods.
arXiv Detail & Related papers (2024-06-13T15:16:38Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - Offline Equilibrium Finding [40.08360411502593]
We aim to generalize Offline RL to a multi-agent or multiplayer-game setting.
Very little research has been done in this area, as the progress is hindered by the lack of standardized datasets and meaningful benchmarks.
Our two model-based algorithms -- OEF-PSRO and OEF-CFR -- are adaptations of the widely-used equilibrium finding algorithms Deep CFR and PSRO in the context of offline learning.
arXiv Detail & Related papers (2022-07-12T03:41:06Z) - Koopman Q-learning: Offline Reinforcement Learning via Symmetries of
Dynamics [29.219095364935885]
offline reinforcement learning leverages large datasets to train policies without interactions with the environment.
Current algorithms over-fit to the training dataset and perform poorly when deployed to out-of-distribution generalizations of the environment.
We learn a Koopman latent representation which allows us to infer symmetries of the system's underlying dynamic.
We empirically evaluate our method on several benchmark offline reinforcement learning tasks and datasets including D4RL, Metaworld and Robosuite.
arXiv Detail & Related papers (2021-11-02T04:32:18Z) - IQ-Learn: Inverse soft-Q Learning for Imitation [95.06031307730245]
imitation learning from a small amount of expert data can be challenging in high-dimensional environments with complex dynamics.
Behavioral cloning is a simple method that is widely used due to its simplicity of implementation and stable convergence.
We introduce a method for dynamics-aware IL which avoids adversarial training by learning a single Q-function.
arXiv Detail & Related papers (2021-06-23T03:43:10Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - MUSBO: Model-based Uncertainty Regularized and Sample Efficient Batch
Optimization for Deployment Constrained Reinforcement Learning [108.79676336281211]
Continuous deployment of new policies for data collection and online learning is either cost ineffective or impractical.
We propose a new algorithmic learning framework called Model-based Uncertainty regularized and Sample Efficient Batch Optimization.
Our framework discovers novel and high quality samples for each deployment to enable efficient data collection.
arXiv Detail & Related papers (2021-02-23T01:30:55Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
offline reinforcement learning (RL) refers to the problem of learning policies from a static dataset of environment interactions.
We build on recent advances in model-based algorithms for offline RL, and extend them to high-dimensional visual observation spaces.
Our approach is both tractable in practice and corresponds to maximizing a lower bound of the ELBO in the unknown POMDP.
arXiv Detail & Related papers (2020-12-21T18:28:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.