Estimating heterogeneous survival treatment effect in observational data
using machine learning
- URL: http://arxiv.org/abs/2008.07044v4
- Date: Wed, 19 May 2021 15:54:08 GMT
- Title: Estimating heterogeneous survival treatment effect in observational data
using machine learning
- Authors: Liangyuan Hu, Jiayi Ji, Fan Li
- Abstract summary: Methods for estimating heterogeneous treatment effect in observational data have largely focused on continuous or binary outcomes.
Using flexible machine learning methods in the counterfactual framework is a promising approach to address challenges due to complex individual characteristics.
- Score: 9.951103976634407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Methods for estimating heterogeneous treatment effect in observational data
have largely focused on continuous or binary outcomes, and have been relatively
less vetted with survival outcomes. Using flexible machine learning methods in
the counterfactual framework is a promising approach to address challenges due
to complex individual characteristics, to which treatments need to be tailored.
To evaluate the operating characteristics of recent survival machine learning
methods for the estimation of treatment effect heterogeneity and inform better
practice, we carry out a comprehensive simulation study presenting a wide range
of settings describing confounded heterogeneous survival treatment effects and
varying degrees of covariate overlap. Our results suggest that the
nonparametric Bayesian Additive Regression Trees within the framework of
accelerated failure time model (AFT-BART-NP) consistently yields the best
performance, in terms of bias, precision and expected regret. Moreover, the
credible interval estimators from AFT-BART-NP provide close to nominal
frequentist coverage for the individual survival treatment effect when the
covariate overlap is at least moderate. Including a non-parametrically
estimated propensity score as an additional fixed covariate in the AFT-BART-NP
model formulation can further improve its efficiency and frequentist coverage.
Finally, we demonstrate the application of flexible causal machine learning
estimators through a comprehensive case study examining the heterogeneous
survival effects of two radiotherapy approaches for localized high-risk
prostate cancer.
Related papers
- Individualized Multi-Treatment Response Curves Estimation using RBF-net with Shared Neurons [1.1119247609126184]
Our non-parametric modeling of the response curves relies on radial basis function (RBF)-nets with shared hidden neurons.
Applying our proposed method to MIMIC data, we obtain several interesting findings related to the impact of different treatment strategies on the length of ICU stay and 12-hour SOFA score for sepsis patients who are home-discharged.
arXiv Detail & Related papers (2024-01-29T21:13:01Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Proximal Causal Learning of Conditional Average Treatment Effects [0.0]
We propose a tailored two-stage loss function for learning heterogeneous treatment effects.
Our proposed estimator can be implemented by off-the-shelf loss-minimizing machine learning methods.
arXiv Detail & Related papers (2023-01-26T02:56:36Z) - Efficient and robust transfer learning of optimal individualized
treatment regimes with right-censored survival data [7.308241944759317]
An individualized treatment regime (ITR) is a decision rule that assigns treatments based on patients' characteristics.
We propose a doubly robust estimator of the value function, and the optimal ITR is learned by maximizing the value function within a pre-specified class of ITRs.
We evaluate the empirical performance of the proposed method by simulation studies and a real data application of sodium bicarbonate therapy for patients with severe metabolic acidaemia.
arXiv Detail & Related papers (2023-01-13T11:47:10Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - BITES: Balanced Individual Treatment Effect for Survival data [0.0]
Estimating the effects of interventions on patient outcome is one of the key aspects of personalized medicine.
Time-to-event data is rarely used for treatment optimization.
We suggest an approach named BITES, which combines a treatment-specific semi-parametric Cox loss with a treatment-balanced deep neural network.
arXiv Detail & Related papers (2022-01-05T10:39:31Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
A central obstacle in the objective assessment of treatment effect (TE) estimators in randomized control trials (RCTs) is the lack of ground truth (or validation set) to test their performance.
We provide a novel cross-validation-like methodology to address this challenge.
We evaluate our methodology across 709 RCTs implemented in the Amazon supply chain.
arXiv Detail & Related papers (2021-12-14T17:53:01Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.