論文の概要: POP909: A Pop-song Dataset for Music Arrangement Generation
- arxiv url: http://arxiv.org/abs/2008.07142v1
- Date: Mon, 17 Aug 2020 08:08:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 04:38:36.646413
- Title: POP909: A Pop-song Dataset for Music Arrangement Generation
- Title(参考訳): POP909:音楽アレンジメント生成のためのポップソングデータセット
- Authors: Ziyu Wang, Ke Chen, Junyan Jiang, Yiyi Zhang, Maoran Xu, Shuqi Dai,
Xianbin Gu, Gus Xia
- Abstract要約: POP909はプロのミュージシャンが作成した909曲のピアノ編曲の複数バージョンを含むデータセットである。
データセットの本体は、音声メロディ、リード楽器メロディ、および元のオーディオファイルに整列したMIDIフォーマットで各曲のピアノ伴奏を含む。
我々はテンポ、ビート、キー、コードなどのアノテーションを提供し、テンポ曲線は手作業でラベル付けされ、その他はMIRアルゴリズムによって行われる。
- 参考スコア(独自算出の注目度): 10.0454303747519
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Music arrangement generation is a subtask of automatic music generation,
which involves reconstructing and re-conceptualizing a piece with new
compositional techniques. Such a generation process inevitably requires
reference from the original melody, chord progression, or other structural
information. Despite some promising models for arrangement, they lack more
refined data to achieve better evaluations and more practical results. In this
paper, we propose POP909, a dataset which contains multiple versions of the
piano arrangements of 909 popular songs created by professional musicians. The
main body of the dataset contains the vocal melody, the lead instrument melody,
and the piano accompaniment for each song in MIDI format, which are aligned to
the original audio files. Furthermore, we provide the annotations of tempo,
beat, key, and chords, where the tempo curves are hand-labeled and others are
done by MIR algorithms. Finally, we conduct several baseline experiments with
this dataset using standard deep music generation algorithms.
- Abstract(参考訳): 楽曲配置生成は、新しい作曲技法による楽曲の再構成と再概念化を含む自動音楽生成のサブタスクである。
このような生成プロセスは、必然的に元のメロディ、コード進行、その他の構造情報からの参照を必要とする。
いくつかの有望なアレンジメントモデルにもかかわらず、より良い評価とより実用的な結果を達成するためのより洗練されたデータがない。
本稿では,プロのミュージシャンが作成した909曲のピアノアレンジメントの複数バージョンを含むデータセットであるPOP909を提案する。
データセットの本体は、音声メロディ、リード楽器メロディ、および元のオーディオファイルに整列したMIDIフォーマットで各曲のピアノ伴奏を含む。
さらに,テンポ,ビート,キー,コードなどのアノテーションを提供し,テンポ曲線を手作業でラベル付けし,その他をMIRアルゴリズムで行う。
最後に、このデータセットについて、標準のディープミュージック生成アルゴリズムを用いて、いくつかのベースライン実験を行う。
関連論文リスト
- PIAST: A Multimodal Piano Dataset with Audio, Symbolic and Text [8.382511298208003]
PIAST(PIAST, PIano dataset with Audio, Symbolic, and Text)は、ピアノ音楽のデータセットである。
われわれはYouTubeから9,673曲を収集し、音楽の専門家による2,023曲の人間のアノテーションを追加した。
どちらも、オーディオ、テキスト、タグアノテーション、そして最先端のピアノの書き起こしとビート追跡モデルを利用したMIDIの書き起こしである。
論文 参考訳(メタデータ) (2024-11-04T19:34:13Z) - MidiCaps: A large-scale MIDI dataset with text captions [6.806050368211496]
本研究の目的は,LLMとシンボリック音楽を組み合わせることで,テキストキャプションを付加した最初の大規模MIDIデータセットを提示することである。
近年のキャプション技術の発展に触発されて,テキスト記述付き168kのMIDIファイルをキュレートしたデータセットを提示する。
論文 参考訳(メタデータ) (2024-06-04T12:21:55Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - InstructME: An Instruction Guided Music Edit And Remix Framework with
Latent Diffusion Models [42.2977676825086]
本稿では,遅延拡散モデルに基づくインストラクションガイド付き音楽編集・リミックスフレームワークであるInstructMEを開発する。
本フレームワークは,編集前後の一貫性を維持するため,U-Netをマルチスケールアグリゲーションで強化する。
提案手法は, 音質, テキスト関連性, 調和性において, 先行するシステムを大幅に上回っている。
論文 参考訳(メタデータ) (2023-08-28T07:11:42Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGenは単一の言語モデル(LM)であり、圧縮された離散的な音楽表現、すなわちトークンの複数のストリームで動作する。
以前の作業とは異なり、MusicGenはシングルステージのトランスフォーマーLMと効率的なトークンインターリービングパターンで構成されている。
論文 参考訳(メタデータ) (2023-06-08T15:31:05Z) - Unsupervised Melody-to-Lyric Generation [91.29447272400826]
本稿では,メロディ・歌詞データを学習することなく高品質な歌詞を生成する手法を提案する。
我々は、メロディと歌詞のセグメンテーションとリズムアライメントを利用して、与えられたメロディをデコード制約にコンパイルする。
我々のモデルは、強いベースラインよりもオントピー的、歌いやすく、知性があり、一貫性のある高品質な歌詞を生成することができる。
論文 参考訳(メタデータ) (2023-05-30T17:20:25Z) - Melody transcription via generative pre-training [86.08508957229348]
メロディの書き起こしの鍵となる課題は、様々な楽器のアンサンブルや音楽スタイルを含む幅広いオーディオを処理できる方法を構築することである。
この課題に対処するために、広帯域オーディオの生成モデルであるJukebox(Dhariwal et al. 2020)の表現を活用する。
広義音楽のクラウドソースアノテーションから50ドル(約5,400円)のメロディ書き起こしを含む新しいデータセットを導出する。
論文 参考訳(メタデータ) (2022-12-04T18:09:23Z) - ComMU: Dataset for Combinatorial Music Generation [20.762884001498627]
Combinatorの音楽生成は、音楽の短いサンプルと豊かな音楽メタデータを生成し、それらを組み合わせて完全な音楽を生成する。
ComMUは、短い音楽サンプルとそれに対応する12の音楽メタデータからなる最初のシンボリック音楽データセットである。
以上の結果から,トラックロールやコード品質などのユニークなメタデータが自動合成の能力を向上させることが示唆された。
論文 参考訳(メタデータ) (2022-11-17T07:25:09Z) - Re-creation of Creations: A New Paradigm for Lyric-to-Melody Generation [158.54649047794794]
Re-creation of Creations (ROC)は、歌詞からメロディ生成のための新しいパラダイムである。
ROCは、Lyric-to-Meody生成において、優れたLyric-Meody特徴アライメントを実現する。
論文 参考訳(メタデータ) (2022-08-11T08:44:47Z) - Controllable deep melody generation via hierarchical music structure
representation [14.891975420982511]
MusicFrameworksは階層的な音楽構造表現であり、フル長のメロディを作成するための多段階の生成プロセスである。
各フレーズでメロディを生成するために、2つの異なるトランスフォーマーベースネットワークを用いてリズムとベーシックメロディを生成する。
さまざまな曲をカスタマイズしたり追加したりするために、音楽フレームワークのコード、基本的なメロディ、リズム構造を変更して、それに応じてネットワークがメロディを生成する。
論文 参考訳(メタデータ) (2021-09-02T01:31:14Z) - PopMAG: Pop Music Accompaniment Generation [190.09996798215738]
単一シーケンスでの同時マルチトラック生成が可能なMUlti-track MIDI表現(MuMIDI)を提案する。
MuMIDIはシーケンス長を拡大し、長期音楽モデリングの新しい課題をもたらす。
我々は,ポップミュージックの伴奏生成をPopMAGと呼ぶ。
論文 参考訳(メタデータ) (2020-08-18T02:28:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。