論文の概要: How to Put Users in Control of their Data in Federated Top-N
Recommendation with Learning to Rank
- arxiv url: http://arxiv.org/abs/2008.07192v4
- Date: Tue, 22 Dec 2020 10:14:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 02:57:57.433138
- Title: How to Put Users in Control of their Data in Federated Top-N
Recommendation with Learning to Rank
- Title(参考訳): ランキングを学習することで、連合トップnレコメンデーションでユーザーデータをコントロールする方法
- Authors: Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Antonio Ferrara,
Fedelucio Narducci
- Abstract要約: FPLは、ユーザがデバイスを離れる機密データの量を制御しながら、中央分解モデルのトレーニングに協力するアーキテクチャである。
提案手法は,フェデレートラーニングの原則に従うことで,ペアワイズ学習とランク最適化を実現する。
- 参考スコア(独自算出の注目度): 16.256897977543982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommendation services are extensively adopted in several user-centered
applications as a tool to alleviate the information overload problem and help
users in orienteering in a vast space of possible choices. In such scenarios,
data ownership is a crucial concern since users may not be willing to share
their sensitive preferences (e.g., visited locations) with a central server.
Unfortunately, data harvesting and collection is at the basis of modern,
state-of-the-art approaches to recommendation. To address this issue, we
present FPL, an architecture in which users collaborate in training a central
factorization model while controlling the amount of sensitive data leaving
their devices. The proposed approach implements pair-wise learning-to-rank
optimization by following the Federated Learning principles, originally
conceived to mitigate the privacy risks of traditional machine learning. The
public implementation is available at https://split.to/sisinflab-fpl.
- Abstract(参考訳): レコメンデーションサービスはいくつかのユーザー中心のアプリケーションで広く採用されており、情報の過負荷を軽減し、ユーザーが選択可能な広い範囲を選べるように支援するツールとなっている。
このようなシナリオでは、ユーザーは機密性の高い好み(例えば訪問先)を中央サーバーと共有しないため、データの所有権は重要な問題である。
残念ながら、データの収集と収集は、現代的で最先端のレコメンデーションアプローチに基づくものです。
この問題に対処するため,ユーザがデバイスを離れる機密データの量を制御しながら,集中因数分解モデルのトレーニングに協力するアーキテクチャであるFPLを提案する。
提案手法は,従来の機械学習のプライバシリスクを軽減するために考案された連合学習原則に従うことにより,ペアワイズ学習-ランク最適化を実現する。
公開実装はhttps://split.to/sisinflab-fplで利用可能である。
関連論文リスト
- DecKG: Decentralized Collaborative Learning with Knowledge Graph Enhancement for POI Recommendation [33.42817477508175]
POI(Point-of-Interest)レコメンデーションのための分散協調学習が研究の関心を集めている。
我々は,POIレコメンデーション(DecKG)のための知識グラフ強化フレームワークを用いた分散協調学習を提案する。
論文 参考訳(メタデータ) (2024-10-14T03:37:47Z) - FedSlate:A Federated Deep Reinforcement Learning Recommender System [18.641244204682536]
推薦システムにおける長期ユーザエンゲージメントの最適化に強化学習法が用いられている。
潜在的な解決策の1つは、さまざまなプラットフォームから集中した場所にデータを集約し、集約されたデータをトレーニングに使用することである。
このアプローチは、通信コストの増加やユーザプライバシに対する潜在的な脅威など、経済的および法的懸念を提起する。
法的なレベルでの共有が禁止されている情報を効果的に活用する強化学習推薦アルゴリズムである textbfFedSlate を提案する。
論文 参考訳(メタデータ) (2024-09-23T10:10:24Z) - PDC-FRS: Privacy-preserving Data Contribution for Federated Recommender System [15.589541738576528]
フェデレートされたレコメンデーションシステム(FedRecs)は、デバイス上のレコメンデーションにおいてユーザのプライバシを保護するために人気のある研究方向として登場した。
FedRecsでは、ユーザーはデータをローカルに保持し、モデルパラメータを中央サーバにアップロードすることで、ローカルのコラボレーティブな情報のみをコントリビュートする。
本稿では,新しいフェデレーション・レコメンデーション・フレームワークであるPDC-FRSを提案する。具体的には,ユーザが異なるプライバシ保証でデータを共有できるように,プライバシ保護データコントリビューション機構を設計する。
論文 参考訳(メタデータ) (2024-09-12T06:13:07Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - Recommendation Systems in Libraries: an Application with Heterogeneous
Data Sources [66.81627042740679]
Reading&Machineプロジェクトは、デジタル化のサポートを利用して、ライブラリの魅力を高め、ユーザエクスペリエンスを向上させる。
プロジェクトでは、ユーザが意思決定プロセスにおいて、ユーザが興味を持つであろう書籍のリストをレコメンデーションシステム(RecSys)で作成するアプリケーションを実装している。
論文 参考訳(メタデータ) (2023-03-21T11:13:01Z) - A Privacy Preserving System for Movie Recommendations Using Federated Learning [12.751432553199628]
本稿では,映画レコメンデーションのためのレコメンデーションシステムを提案する。
フェデレートされた学習を用いてトレーニングされるため、その性質上、プライバシ保護が重要である。
FedQと呼ばれる新しいフェデレーション学習スキームが採用され、非i.d.nessと小さなローカルデータセットの問題に対処する。
論文 参考訳(メタデータ) (2023-03-07T17:22:38Z) - Semi-decentralized Federated Ego Graph Learning for Recommendation [58.21409625065663]
デバイス上でのレコメンデーションのための半分散型フェデレーションエゴグラフ学習フレームワークであるSemiDFEGLを提案する。
提案するフレームワークはモデルに依存しないため、既存のグラフニューラルネットワークベースのレコメンデーションメソッドやプライバシ保護技術とシームレスに統合できる。
論文 参考訳(メタデータ) (2023-02-10T03:57:45Z) - FedCL: Federated Contrastive Learning for Privacy-Preserving
Recommendation [98.5705258907774]
FedCLは、プライバシーを十分に保護した効果的なモデルトレーニングのために、高品質な負のサンプルを利用することができる。
まず、各クライアントのローカルモデルを介してローカルユーザデータからユーザ埋め込みを推測し、その後、ローカルディファレンシャルプライバシ(LDP)で摂動する。
個々のユーザ埋め込みにはLDPによる重騒音が伴うため,ノイズの影響を軽減するため,サーバ上にユーザ埋め込みをクラスタ化することを提案する。
論文 参考訳(メタデータ) (2022-04-21T02:37:10Z) - Decentralized Collaborative Learning Framework for Next POI
Recommendation [39.65626819903099]
Next Point-of-Interest (POI)レコメンデーションは位置情報ベースのソーシャルネットワーク(LBSN)において必須の機能となっている。
正確なレコメンデーションには、膨大な量の履歴チェックインデータが必要であるため、位置情報に敏感なデータをクラウドサーバで処理する必要があるため、ユーザのプライバシを脅かすことになる。
本稿では,POIレコメンデーション(DCLR)のための分散協調学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-30T11:00:11Z) - Multi-Center Federated Learning [62.57229809407692]
本稿では,フェデレート学習のための新しい多中心集約機構を提案する。
非IIDユーザデータから複数のグローバルモデルを学び、同時にユーザとセンタ間の最適なマッチングを導出する。
ベンチマークデータセットによる実験結果から,本手法はいくつかの一般的なフェデレーション学習法より優れていることが示された。
論文 参考訳(メタデータ) (2020-05-03T09:14:31Z) - Unsupervised Model Personalization while Preserving Privacy and
Scalability: An Open Problem [55.21502268698577]
本研究では,非教師なしモデルパーソナライゼーションの課題について検討する。
この問題を探求するための新しいDual User-Adaptation Framework(DUA)を提供する。
このフレームワークは、サーバ上のモデルパーソナライズとユーザデバイス上のローカルデータ正規化に柔軟にユーザ適応を分散させる。
論文 参考訳(メタデータ) (2020-03-30T09:35:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。