論文の概要: DecKG: Decentralized Collaborative Learning with Knowledge Graph Enhancement for POI Recommendation
- arxiv url: http://arxiv.org/abs/2410.10130v1
- Date: Mon, 14 Oct 2024 03:37:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 13:03:15.351279
- Title: DecKG: Decentralized Collaborative Learning with Knowledge Graph Enhancement for POI Recommendation
- Title(参考訳): DecKG: POIレコメンデーションのための知識グラフ強化による分散協調学習
- Authors: Ruiqi Zheng, Liang Qu, Guanhua Ye, Tong Chen, Yuhui Shi, Hongzhi Yin,
- Abstract要約: POI(Point-of-Interest)レコメンデーションのための分散協調学習が研究の関心を集めている。
我々は,POIレコメンデーション(DecKG)のための知識グラフ強化フレームワークを用いた分散協調学習を提案する。
- 参考スコア(独自算出の注目度): 33.42817477508175
- License:
- Abstract: Decentralized collaborative learning for Point-of-Interest (POI) recommendation has gained research interest due to its advantages in privacy preservation and efficiency, as it keeps data locally and leverages collaborative learning among clients to train models in a decentralized manner. However, since local data is often limited and insufficient for training accurate models, a common solution is integrating external knowledge as auxiliary information to enhance model performance. Nevertheless, this solution poses challenges for decentralized collaborative learning. Due to private nature of local data, identifying relevant auxiliary information specific to each user is non-trivial. Furthermore, resource-constrained local devices struggle to accommodate all auxiliary information, which places heavy burden on local storage. To fill the gap, we propose a novel decentralized collaborative learning with knowledge graph enhancement framework for POI recommendation (DecKG). Instead of directly uploading interacted items, users generate desensitized check-in data by uploading general categories of interacted items and sampling similar items from same category. The server then pretrains KG without sensitive user-item interactions and deploys relevant partitioned sub-KGs to individual users. Entities are further refined on the device, allowing client to client communication to exchange knowledge learned from local data and sub-KGs. Evaluations across two real-world datasets demonstrate DecKG's effectiveness recommendation performance.
- Abstract(参考訳): POI(Point-of-Interest)レコメンデーションのための分散協調学習は、データをローカルに保持し、クライアント間で協調学習を活用して、分散的なモデルトレーニングを行なうことにより、プライバシー保護と効率の優位性から研究の関心を集めている。
しかし, 正確なモデルの訓練にはローカルデータは限られ, 不十分な場合が多いため, モデル性能を向上させるため, 外部知識を補助情報として統合する手法が一般的である。
それでもこのソリューションは、分散化された協調学習に課題をもたらす。
ローカルデータのプライベートな性質のため、各ユーザ固有の関連する補助情報を特定することは簡単ではない。
さらに、資源に制約のあるローカルデバイスは、ローカルストレージに重きを置き、すべての補助情報に対応するのに苦労する。
このギャップを埋めるために,POIレコメンデーション(DecKG)のための知識グラフ強化フレームワークを用いた分散協調学習を提案する。
対話アイテムを直接アップロードする代わりに、ユーザは対話アイテムの一般的なカテゴリをアップロードし、同じカテゴリから類似アイテムをサンプリングすることで、デセンシタイズされたチェックインデータを生成する。
サーバは、機密性の高いユーザとイテムのインタラクションなしにKGを事前トレーニングし、関連するパーティショニングされたサブKGを個々のユーザにデプロイする。
エンティティはデバイス上でさらに洗練され、クライアントとの通信により、ローカルデータやサブKGから学んだ知識を交換することができる。
2つの実世界のデータセットに対する評価は、DecKGの有効性の推奨性能を示している。
関連論文リスト
- Personalized Decentralized Federated Learning with Knowledge
Distillation [5.469841541565307]
フェデレート学習機能のパーソナライゼーションは、データや振る舞いのばらつきが高いクライアントのコーディネータとして機能する。
一般に、分散ネットワークにおいて、他のユーザーのモデルについて限られた知識の下で類似性を定量化することは困難である。
本研究では,局所モデル間の統計的距離を識別するために,知識蒸留技術を活用したパーソナライズされた完全分散FLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-23T16:41:07Z) - Knowledge-Aware Federated Active Learning with Non-IID Data [75.98707107158175]
本稿では,アノテーション予算に制限のあるグローバルモデルを効率的に学習するための,連合型アクティブラーニングパラダイムを提案する。
フェデレートされたアクティブラーニングが直面する主な課題は、サーバ上のグローバルモデルのアクティブサンプリング目標と、ローカルクライアントのアクティブサンプリング目標とのミスマッチである。
本稿では,KSAS (Knowledge-Aware Federated Active Learning) とKCFU (Knowledge-Compensatory Federated Update) を組み合わせた,知識対応型アクティブ・ラーニング(KAFAL)を提案する。
論文 参考訳(メタデータ) (2022-11-24T13:08:43Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
本稿では,分散型(ピアツーピア)通信プロトコルであるDis-PFLにおいて,新たな個人化フェデレーション学習フレームワークを提案する。
Dis-PFLはパーソナライズされたスパースマスクを使用して、エッジ上のスパースローカルモデルをカスタマイズする。
本手法は,計算複雑性の異なる異種ローカルクライアントに容易に適応できることを実証する。
論文 参考訳(メタデータ) (2022-06-01T02:20:57Z) - Decentralized Collaborative Learning Framework for Next POI
Recommendation [39.65626819903099]
Next Point-of-Interest (POI)レコメンデーションは位置情報ベースのソーシャルネットワーク(LBSN)において必須の機能となっている。
正確なレコメンデーションには、膨大な量の履歴チェックインデータが必要であるため、位置情報に敏感なデータをクラウドサーバで処理する必要があるため、ユーザのプライバシを脅かすことになる。
本稿では,POIレコメンデーション(DCLR)のための分散協調学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-30T11:00:11Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
局所的な学習とプライベートな集中学習の協調は、総合的に有用であり、精度とプライバシのトレードオフを改善していることを示す。
合成および実世界のデータセットに関する実験により理論的結果について述べる。
論文 参考訳(メタデータ) (2022-02-10T20:44:44Z) - Federated Learning from Small Datasets [48.879172201462445]
フェデレーション学習は、複数のパーティが、ローカルデータを共有せずに、共同モデルを共同でトレーニングすることを可能にする。
そこで本研究では,局所モデルの置換とモデルアグリゲーションを連動させる新しい手法を提案する。
置換は、各ローカルモデルをローカルデータセットのデージーチェーンに公開することで、データスパースドメインでのより効率的なトレーニングを実現する。
論文 参考訳(メタデータ) (2021-10-07T13:49:23Z) - IFedAvg: Interpretable Data-Interoperability for Federated Learning [39.388223565330385]
本研究では,表型データに対するフェデレーション学習において,クライアントデータの不整合によって引き起こされる低相互運用性の定義と対処を行う。
提案手法であるiFedAvgは、協調学習プロセスのパーソナライズされたきめ細かな理解を可能にするために、局所的な要素ワイドアフィン層を追加するフェデレーション平均化に基づいている。
我々は、2014~2016年の西アフリカエボラ流行から得られた、いくつかの公開ベンチマークと実世界のデータセットを用いて、iFedAvgを評価し、世界でも最大規模のデータセットを共同で作成した。
論文 参考訳(メタデータ) (2021-07-14T09:54:00Z) - Decentralised Learning from Independent Multi-Domain Labels for Person
Re-Identification [69.29602103582782]
ディープラーニングは多くのコンピュータビジョンタスクで成功している。
しかし、プライバシー問題に対する意識の高まりは、特に人物の再識別(Re-ID)において、ディープラーニングに新たな課題をもたらす。
我々は,複数のプライバシ保護されたローカルモデル(ローカルクライアント)を同時に学習することにより,汎用的なグローバルモデル(中央サーバ)を構築するための,フェデレート・パーソナライゼーション(FedReID)と呼ばれる新しいパラダイムを提案する。
このクライアントサーバ共同学習プロセスは、プライバシコントロールの下で反復的に実行されるため、分散データを共有したり、収集したりすることなく、分散学習を実現することができる。
論文 参考訳(メタデータ) (2020-06-07T13:32:33Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。