論文の概要: A deep active inference model of the rubber-hand illusion
- arxiv url: http://arxiv.org/abs/2008.07408v2
- Date: Tue, 22 Dec 2020 13:48:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 04:09:53.841887
- Title: A deep active inference model of the rubber-hand illusion
- Title(参考訳): ゴムハンド錯覚の深部能動推論モデル
- Authors: Thomas Rood and Marcel van Gerven and Pablo Lanillos
- Abstract要約: 近年のヒトの研究では、RHIは知覚された腕の位置を変えるだけでなく、不随意力を引き起こすことが示されている。
視覚的高次元入力を扱うモデルでは,人間の知覚と力のパターンが類似していることが示される。
- 参考スコア(独自算出の注目度): 3.0854497868458464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding how perception and action deal with sensorimotor conflicts,
such as the rubber-hand illusion (RHI), is essential to understand how the body
adapts to uncertain situations. Recent results in humans have shown that the
RHI not only produces a change in the perceived arm location, but also causes
involuntary forces. Here, we describe a deep active inference agent in a
virtual environment, which we subjected to the RHI, that is able to account for
these results. We show that our model, which deals with visual high-dimensional
inputs, produces similar perceptual and force patterns to those found in
humans.
- Abstract(参考訳): ゴムハンド錯覚(RHI)のような感覚運動器の対立に対する知覚と行動の対応を理解することは、身体が不確実な状況にどのように適応するかを理解するために不可欠である。
近年のヒトの研究では、RHIは知覚された腕の位置を変えるだけでなく、不随意力を引き起こすことが示されている。
本稿では,rhiを対象とする仮想環境において,これらの結果を考慮できる深い能動推論エージェントについて述べる。
視覚的高次元入力を扱うモデルでは,人間の知覚と力のパターンが類似していることが示されている。
関連論文リスト
- When Does Perceptual Alignment Benefit Vision Representations? [76.32336818860965]
視覚モデル表現と人間の知覚的判断との整合がユーザビリティに与える影響について検討する。
モデルと知覚的判断を一致させることで、多くの下流タスクで元のバックボーンを改善する表現が得られることがわかった。
その結果,人間の知覚的知識に関する帰納バイアスを視覚モデルに注入することは,より良い表現に寄与することが示唆された。
論文 参考訳(メタデータ) (2024-10-14T17:59:58Z) - Mind the GAP: Glimpse-based Active Perception improves generalization and sample efficiency of visual reasoning [0.7999703756441756]
視覚関係を理解する人間の能力は、AIシステムよりもはるかに優れている。
Glimpse-based Active Perception (GAP) システムを開発した。
その結果,GAPは即時的な視覚内容を超えた視覚関係の抽出に不可欠であることが示唆された。
論文 参考訳(メタデータ) (2024-09-30T11:48:11Z) - Closely Interactive Human Reconstruction with Proxemics and Physics-Guided Adaption [64.07607726562841]
既存の人間再建アプローチは主に、正確なポーズの回復や侵入を避けることに焦点を当てている。
本研究では,モノクロ映像から密に対話的な人間を再構築する作業に取り組む。
本稿では,視覚情報の欠如を補うために,確率的行動や物理からの知識を活用することを提案する。
論文 参考訳(メタデータ) (2024-04-17T11:55:45Z) - Sim-to-Real Causal Transfer: A Metric Learning Approach to
Causally-Aware Interaction Representations [62.48505112245388]
エージェント相互作用の現代的表現の因果認識を詳細に検討する。
近年の表現は、非因果剤の摂動に対して部分的に耐性があることが示されている。
因果アノテーションを用いた潜在表現を正規化するための計量学習手法を提案する。
論文 参考訳(メタデータ) (2023-12-07T18:57:03Z) - Modelling Human Visual Motion Processing with Trainable Motion Energy
Sensing and a Self-attention Network [1.9458156037869137]
本稿では,生体とコンピュータの視覚モデルとのギャップを埋めることで,人間の動作知覚のイメージ計算可能なモデルを提案する。
このモデルアーキテクチャは、生体視覚システムにおける運動知覚のコア構造であるV1-MTの計算を捉えることを目的としている。
サイリコ神経生理学では、我々のモデルの単位応答は、運動プーリングやスピードチューニングに関する哺乳類の神経記録に類似していることが明らかになっている。
論文 参考訳(メタデータ) (2023-05-16T04:16:07Z) - I am Only Happy When There is Light: The Impact of Environmental Changes
on Affective Facial Expressions Recognition [65.69256728493015]
本研究では,異なる画像条件が人間の表情からの覚醒の認識に与える影響について検討した。
以上の結果から,人間の感情状態の解釈が肯定的,否定的に大きく異なることが示唆された。
論文 参考訳(メタデータ) (2022-10-28T16:28:26Z) - Human Eyes Inspired Recurrent Neural Networks are More Robust Against Adversarial Noises [7.689542442882423]
我々は人間の脳にインスパイアされたデュアルストリーム視覚モデルを設計した。
このモデルは網膜のような入力層を特徴とし、次の焦点(固定点)を決定する2つのストリームと、固定点を取り巻く視覚を解釈する2つのストリームを含む。
このモデルを,物体認識,視線行動,対向強靭性の観点から評価した。
論文 参考訳(メタデータ) (2022-06-15T03:44:42Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - Information is Power: Intrinsic Control via Information Capture [110.3143711650806]
我々は,潜時状態空間モデルを用いて推定したエージェントの状態訪問のエントロピーを最小化する,コンパクトで汎用的な学習目的を論じる。
この目的は、不確実性の低減に対応する環境情報収集と、将来の世界状態の予測不可能性の低減に対応する環境制御の両方をエージェントに誘導する。
論文 参考訳(メタデータ) (2021-12-07T18:50:42Z) - On the Sensory Commutativity of Action Sequences for Embodied Agents [2.320417845168326]
群論の数学的形式論に基づくエンボディエージェントの知覚について検討する。
本稿では,エージェントの自由度が環境に与える影響を計測する感覚コミュニケーション確率基準を提案する。
本研究では,SCPと行動系列の可換性を用いて環境中の物体を学習する方法を実証的に説明する。
論文 参考訳(メタデータ) (2020-02-13T16:58:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。