論文の概要: Mechanistic Interpretability of Emotion Inference in Large Language Models
- arxiv url: http://arxiv.org/abs/2502.05489v1
- Date: Sat, 08 Feb 2025 08:11:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:35:36.121460
- Title: Mechanistic Interpretability of Emotion Inference in Large Language Models
- Title(参考訳): 大規模言語モデルにおける感情推論の機械論的解釈可能性
- Authors: Ala N. Tak, Amin Banayeeanzade, Anahita Bolourani, Mina Kian, Robin Jia, Jonathan Gratch,
- Abstract要約: 感情表現は大規模言語モデルにおいて特定の領域に機能的に局所化されていることを示す。
我々は,環境刺激の評価から感情が出現することを示すための認知的評価理論を導いた。
この研究は、因果的に介入し、感情的なテキスト生成を正確に形作る新しい方法を強調している。
- 参考スコア(独自算出の注目度): 16.42503362001602
- License:
- Abstract: Large language models (LLMs) show promising capabilities in predicting human emotions from text. However, the mechanisms through which these models process emotional stimuli remain largely unexplored. Our study addresses this gap by investigating how autoregressive LLMs infer emotions, showing that emotion representations are functionally localized to specific regions in the model. Our evaluation includes diverse model families and sizes and is supported by robustness checks. We then show that the identified representations are psychologically plausible by drawing on cognitive appraisal theory, a well-established psychological framework positing that emotions emerge from evaluations (appraisals) of environmental stimuli. By causally intervening on construed appraisal concepts, we steer the generation and show that the outputs align with theoretical and intuitive expectations. This work highlights a novel way to causally intervene and precisely shape emotional text generation, potentially benefiting safety and alignment in sensitive affective domains.
- Abstract(参考訳): 大規模言語モデル(LLM)は、人間の感情をテキストから予測する有望な能力を示す。
しかし、これらのモデルが感情的な刺激を処理するメカニズムはほとんど解明されていない。
本研究は,感情表現がモデル内の特定の領域に機能的に局在していることを示し,自己回帰的LLMが感情をどう推測するかを検討することで,このギャップに対処する。
我々の評価には様々なモデルファミリとサイズが含まれており、ロバストネスチェックによって支えられている。
次に,認知的評価理論を基礎として,感情が環境刺激の評価(評価)から現れることを示唆する心理学的枠組みとして,識別された表現が心理的に妥当であることを示す。
解析された評価概念を慎重に介入することにより、生成を制御し、アウトプットが理論的、直感的な期待と一致することを示す。
この研究は、感情的なテキスト生成を因果的に介入し、正確に形作る新しい方法を強調し、センシティブな感情的ドメインの安全性とアライメントに寄与する可能性がある。
関連論文リスト
- MEMO-Bench: A Multiple Benchmark for Text-to-Image and Multimodal Large Language Models on Human Emotion Analysis [53.012111671763776]
そこで本研究では、7,145枚の肖像画からなる総合的なベンチマークであるMEMO-Benchを紹介した。
以上の結果から,既存のT2Iモデルは負のモデルよりも肯定的な感情を生成するのに効果的であることが示唆された。
MLLMは人間の感情の識別と認識に一定の効果を示すが、人間のレベルの正確さには欠ける。
論文 参考訳(メタデータ) (2024-11-18T02:09:48Z) - ECR-Chain: Advancing Generative Language Models to Better Emotion-Cause Reasoners through Reasoning Chains [61.50113532215864]
CEE(Causal Emotion Entailment)は、ターゲット発話で表現される感情を刺激する会話における因果発話を特定することを目的としている。
CEEにおける現在の研究は、主に会話のセマンティックな相互作用と感情的な相互作用をモデル化することに焦点を当てている。
本研究では,会話中の感情表現から刺激を推測するために,ステップバイステップの推論手法である感情・因果関係(ECR-Chain)を導入する。
論文 参考訳(メタデータ) (2024-05-17T15:45:08Z) - Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought [50.13429055093534]
大規模言語モデル(LLM)は様々な感情認識タスクにおいて顕著な性能を示した。
本研究では,感情生成タスクにおけるLLMの性能を高めるための感情連鎖(ECoT)を提案する。
論文 参考訳(メタデータ) (2024-01-12T16:42:10Z) - An Appraisal-Based Chain-Of-Emotion Architecture for Affective Language
Model Game Agents [0.40964539027092906]
本研究では,感情的知性課題の解決と感情のシミュレートを目的とした大規模言語モデルの能力について検討する。
心理学的評価研究に基づいて,ゲーム内の感情シミュレーションのための新たな感情連鎖アーキテクチャを提示し,評価する。
論文 参考訳(メタデータ) (2023-09-10T16:55:49Z) - Implicit Design Choices and Their Impact on Emotion Recognition Model
Development and Evaluation [5.534160116442057]
感情の主観性は、正確で堅牢な計算モデルを開発する上で大きな課題を生じさせる。
この論文は、多様なデータセットの収集から始まる感情認識の批判的な側面を調べる。
非表現的トレーニングデータの課題に対処するため、この研究はマルチモーダルストレス感情データセットを収集する。
論文 参考訳(メタデータ) (2023-09-06T02:45:42Z) - HICEM: A High-Coverage Emotion Model for Artificial Emotional
Intelligence [9.153146173929935]
次世代の人工知能(AEI)は、より深く、より有意義な人間と機械の相互作用に対するユーザの欲求に対処するために、中心的な段階を採っている。
心理学における歴史的焦点である感情の理論とは異なり、感情モデルは記述的な道具である。
この研究は、社会ロボティクス、人間と機械の相互作用、メンタルヘルスケア、計算心理学に幅広い影響を及ぼす。
論文 参考訳(メタデータ) (2022-06-15T15:21:30Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - Facial Expression Editing with Continuous Emotion Labels [76.36392210528105]
深層生成モデルは、自動表情編集の分野で素晴らしい成果を上げている。
連続した2次元の感情ラベルに従って顔画像の表情を操作できるモデルを提案する。
論文 参考訳(メタデータ) (2020-06-22T13:03:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。