論文の概要: Siloed Federated Learning for Multi-Centric Histopathology Datasets
- arxiv url: http://arxiv.org/abs/2008.07424v1
- Date: Mon, 17 Aug 2020 15:49:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 03:33:30.586802
- Title: Siloed Federated Learning for Multi-Centric Histopathology Datasets
- Title(参考訳): 多施設の病理組織データに対するサイロ化フェデレーション学習
- Authors: Mathieu Andreux, Jean Ogier du Terrail, Constance Beguier, Eric W.
Tramel
- Abstract要約: 本稿では,医学領域における深層学習アーキテクチャのための新しいフェデレーション学習手法を提案する。
局所統計バッチ正規化(BN)層が導入され、協調的に訓練されるが中心に固有のモデルが作られる。
本研究では,Camelyon16およびCamelyon17データセットから抽出した腫瘍組織像の分類法についてベンチマークを行った。
- 参考スコア(独自算出の注目度): 0.17842332554022694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While federated learning is a promising approach for training deep learning
models over distributed sensitive datasets, it presents new challenges for
machine learning, especially when applied in the medical domain where
multi-centric data heterogeneity is common. Building on previous domain
adaptation works, this paper proposes a novel federated learning approach for
deep learning architectures via the introduction of local-statistic batch
normalization (BN) layers, resulting in collaboratively-trained, yet
center-specific models. This strategy improves robustness to data heterogeneity
while also reducing the potential for information leaks by not sharing the
center-specific layer activation statistics. We benchmark the proposed method
on the classification of tumorous histopathology image patches extracted from
the Camelyon16 and Camelyon17 datasets. We show that our approach compares
favorably to previous state-of-the-art methods, especially for transfer
learning across datasets.
- Abstract(参考訳): フェデレートされた学習は、分散センシティブデータセットよりもディープラーニングモデルをトレーニングするための有望なアプローチであるが、特にマルチ中心データの異種性が一般的である医療領域に適用する場合、機械学習に対する新たな課題が提示される。
本稿では,従来のドメイン適応手法に基づいて,局所統計バッチ正規化(BN)層を導入し,協調的に学習されるが,中心に固有のモデルを構築することによって,ディープラーニングアーキテクチャの新しいフェデレーション学習手法を提案する。
この戦略は、データの不均一性に対するロバスト性を改善し、センタ固有の層アクティベーション統計を共有せずに情報漏洩の可能性を低減する。
本研究では,camlyon16およびcamlyon17データセットから抽出した腫瘍病理画像パッチの分類法について検討した。
提案手法は,従来の最先端手法,特にデータセット間の伝達学習に好適であることを示す。
関連論文リスト
- LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
知識分解」は、特定の医療課題のパフォーマンス向上を目的としている。
我々はLow-Rank Knowledge Decomposition(LoRKD)という新しいフレームワークを提案する。
LoRKDは、低ランクのエキスパートモジュールと効率的な知識分離畳み込みを組み込むことで、グラデーションを異なるタスクから明確に分離する。
論文 参考訳(メタデータ) (2024-09-29T03:56:21Z) - Synthetic Data for Robust Stroke Segmentation [0.0]
ニューロイメージングにおける病変のセグメンテーションに対する現在のディープラーニングベースのアプローチは、高解像度の画像と広範囲な注釈付きデータに依存することが多い。
本稿では,脳卒中病変のセグメンテーションに適した新しい合成データフレームワークを提案する。
我々のアプローチは、正常組織と病理組織の両方にまたがるセグメンテーションを促進するために、健康なデータセットと脳卒中データセットからラベルマップでモデルを訓練する。
論文 参考訳(メタデータ) (2024-04-02T13:42:29Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Deep learning based domain adaptation for mitochondria segmentation on
EM volumes [5.682594415267948]
対象領域におけるミトコンドリアセグメンテーションを改善するための3つの非教師なし領域適応戦略を提案する。
そこで本研究では,ソースドメイン内でのみ得られる形態的事前条件に基づいて,新たな学習停止基準を提案する。
評価ラベルがない場合、提案した形態素に基づく計量をモニタリングすることは、トレーニングプロセスを止めて平均最適モデルを選択するための直感的で効果的な方法である。
論文 参考訳(メタデータ) (2022-02-22T09:49:25Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
我々はデータ拡張を選択するための便利な勾配法を開発した。
我々はKronecker-factored Laplace近似を我々の目的とする限界確率に近似する。
論文 参考訳(メタデータ) (2022-02-22T02:51:11Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
本稿では,Long-Short-Term-Memory(LSTM)とCapsule Networksを1つのネットワークに結合した新しいNNアーキテクチャを提案する。
提案手法は教師なし学習手法を用いて大量のラベル付きトレーニングデータを見つける際の問題を克服する。
論文 参考訳(メタデータ) (2022-02-11T10:33:53Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
本稿では,CDMS(Consistency and Diversity induced Human Motion)アルゴリズムを提案する。
我々のモデルは、ソースとターゲットデータを異なる多層特徴空間に分解する。
ソースとターゲットデータ間の領域ギャップを低減するために、マルチミューチュアル学習戦略を実行する。
論文 参考訳(メタデータ) (2022-02-10T06:23:56Z) - Handling Data Heterogeneity with Generative Replay in Collaborative
Learning for Medical Imaging [21.53220262343254]
本稿では,協調学習手法におけるデータ不均一性の課題に対処する新たな再生戦略を提案する。
一次モデルは所望のタスクを学習し、補助的な「生成再生モデル」は入力画像によく似た画像を合成するか、潜伏変数の抽出を支援する。
生成的再生戦略は柔軟であり、既存の協調学習手法に組み込んで、機関間のデータの均一性を扱う能力を向上させるか、あるいはコミュニケーションコストを削減するために、新しい個別の協調学習フレームワーク(FedReplayと称される)として使用される。
論文 参考訳(メタデータ) (2021-06-24T17:39:55Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
高品質なディープラーニングモデルを訓練するには,大量の患者情報を集める必要がある。
患者データのプライバシを保護する必要があるため、複数の機関から中央データベースを組み立てることは困難である。
フェデレート・ラーニング(Federated Learning)は、エンティティのデータを集中化せずに、人口レベルのモデルをトレーニングすることを可能にする。
論文 参考訳(メタデータ) (2020-01-16T04:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。