論文の概要: Synthetic Data for Robust Stroke Segmentation
- arxiv url: http://arxiv.org/abs/2404.01946v2
- Date: Fri, 08 Nov 2024 20:26:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:04:46.694037
- Title: Synthetic Data for Robust Stroke Segmentation
- Title(参考訳): ロバストストロークセグメンテーションのための合成データ
- Authors: Liam Chalcroft, Ioannis Pappas, Cathy J. Price, John Ashburner,
- Abstract要約: ニューロイメージングにおける病変のセグメンテーションに対する現在のディープラーニングベースのアプローチは、高解像度の画像と広範囲な注釈付きデータに依存することが多い。
本稿では,脳卒中病変のセグメンテーションに適した新しい合成データフレームワークを提案する。
我々のアプローチは、正常組織と病理組織の両方にまたがるセグメンテーションを促進するために、健康なデータセットと脳卒中データセットからラベルマップでモデルを訓練する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Current deep learning-based approaches to lesion segmentation in neuroimaging often depend on high-resolution images and extensive annotated data, limiting clinical applicability. This paper introduces a novel synthetic data framework tailored for stroke lesion segmentation, expanding the SynthSeg methodology to incorporate lesion-specific augmentations that simulate diverse pathological features. Using a modified nnUNet architecture, our approach trains models with label maps from healthy and stroke datasets, facilitating segmentation across both normal and pathological tissue without reliance on specific sequence-based training. Evaluation across in-domain and out-of-domain (OOD) datasets reveals that our method matches state-of-the-art performance within the training domain and significantly outperforms existing methods on OOD data. By minimizing dependence on large annotated datasets and allowing for cross-sequence applicability, our framework holds potential to improve clinical neuroimaging workflows, particularly in stroke pathology. PyTorch training code and weights are publicly available at https://github.com/liamchalcroft/SynthStroke, along with an SPM toolbox featuring a plug-and-play model at https://github.com/liamchalcroft/SynthStrokeSPM.
- Abstract(参考訳): 神経画像における病変のセグメンテーションに対する現在のディープラーニングベースのアプローチは、しばしば高解像度の画像と広範な注釈付きデータに依存し、臨床応用性を制限する。
本稿では,脳卒中病変のセグメンテーションに適した新しい合成データフレームワークについて紹介し,SynthSeg法を拡張した。
改良されたnnUNetアーキテクチャを用いて、健康なデータセットとストロークデータセットからラベルマップをトレーニングし、特定のシーケンスベースのトレーニングに頼ることなく、正常組織と病理組織の両方のセグメンテーションを容易にする。
ドメイン内およびドメイン外(OOD)データセットによる評価により,本手法がトレーニング領域内の最先端のパフォーマンスと一致し,既存のOODデータよりも大幅に優れていたことが判明した。
大規模なアノテートデータセットへの依存を最小限に抑え,クロスシーケンス適用性を実現することにより,脳卒中病態における臨床神経画像のワークフローを改善する可能性を秘めている。
PyTorchのトレーニングコードとウェイトはhttps://github.com/liamchalcroft/SynthStrokeで公開されている。
関連論文リスト
- Generalizing Segmentation Foundation Model Under Sim-to-real Domain-shift for Guidewire Segmentation in X-ray Fluoroscopy [1.4353812560047192]
Sim-to-real ドメイン適応アプローチは、コスト効率の良いソリューションを提供するシミュレーションから合成データを利用する。
対象領域のアノテーションを使わずに、SAMを蛍光X線ガイドワイヤセグメント化に適応させる戦略を提案する。
提案手法は、事前訓練されたSAMと、最先端のドメイン適応技術の両方を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2024-10-09T21:59:48Z) - Continual atlas-based segmentation of prostate MRI [2.17257168063257]
自然な画像分類のために設計された連続学習(CL)法は、しばしば基本的な品質基準に達しない。
我々は,プロトタイプを用いて高品質なセグメンテーションマスクを生成するアトラスベースのセグメンテーション手法であるAtlas Replayを提案する。
我々の結果は、Atlas Replayは堅牢であり、知識を維持しながら、まだ見つからない領域に対してうまく一般化していることを示している。
論文 参考訳(メタデータ) (2023-11-01T14:29:46Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Learning of Inter-Label Geometric Relationships Using Self-Supervised
Learning: Application To Gleason Grade Segmentation [4.898744396854313]
そこで本研究では,PCaの病理組織像に対して,異なる疾患ラベル間の幾何学的関係を学習して合成する方法を提案する。
我々はGleasonスコアを用いた弱教師付きセグメンテーション手法を用いて、疾患領域をセグメンテーションする。
得られたセグメンテーションマップは、行方不明のマスクセグメントを予測するためにShaRe-Net(ShaRe-Net)をトレーニングするために使用される。
論文 参考訳(メタデータ) (2021-10-01T13:47:07Z) - Towards Robust General Medical Image Segmentation [2.127049691404299]
一般医用画像分割システムのロバスト性を評価するための新しい枠組みを提案する。
ROG(RObust Generic Medical Image segmentation)のための新しい格子アーキテクチャを提案する。
以上の結果から,ROGはMSDの様々なタスクにまたがる一般化が可能であり,高度な敵攻撃下での最先端技術を上回ることが示唆された。
論文 参考訳(メタデータ) (2021-07-09T07:17:05Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Semi-supervised Pathology Segmentation with Disentangled Representations [10.834978793226444]
本稿では,初めて共同で学習しようとする病理分類モデルである解剖-病理解離ネットワーク(APD-Net, Anatomy-Pathology Disentanglement Network)を提案する。
APD-Netは、アノテーションの少ない病理的セグメンテーションを実行し、異なる量の監視で性能を維持し、関連するディープラーニング手法より優れている。
論文 参考訳(メタデータ) (2020-09-05T17:07:59Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。