Fully Arbitrary Control of Frequency-Bin Qubits
- URL: http://arxiv.org/abs/2008.07444v1
- Date: Mon, 17 Aug 2020 16:06:16 GMT
- Title: Fully Arbitrary Control of Frequency-Bin Qubits
- Authors: Hsuan-Hao Lu, Emma M. Simmerman, Pavel Lougovski, Andrew M. Weiner,
Joseph M. Lukens
- Abstract summary: We numerically establish optimal settings for multiple configurations of electro-optic phase modulators and pulse shapers.
Performance at the single-photon level is validated through the rotation of a single frequency-bin qubit to 41 points spread over the Bloch sphere.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate control of two-level systems is a longstanding problem in quantum
mechanics. One such quantum system is the frequency-bin qubit: a single photon
existing in superposition of two discrete frequency modes. %and a potential
building block for scalable, fiber-compatible quantum information processing.
In this work, we demonstrate fully arbitrary control of frequency-bin qubits in
a quantum frequency processor for the first time. We numerically establish
optimal settings for multiple configurations of electro-optic phase modulators
and pulse shapers, experimentally confirming near-unity mode-transformation
fidelity for all fundamental rotations. Performance at the single-photon level
is validated through the rotation of a single frequency-bin qubit to 41 points
spread over the entire Bloch sphere, as well as tracking of the state path
followed by the output of a tunable frequency beamsplitter, with Bayesian
tomography confirming state fidelities $\mathcal{F}_\rho>0.98$ for all cases.
Such high-fidelity transformations expand the practical potential of frequency
encoding in quantum communications, offering exceptional precision and low
noise in general qubit manipulation.
Related papers
- NOON-state interference in the frequency domain [7.320599749915842]
In this paper, we demonstrate the photon number path entanglement in the frequency domain by implementing a frequency beam splitter.
The two-photon NOON state in a single-mode fiber is generated in the frequency domain, manifesting the two-photon interference with two-fold enhanced resolution.
This successful translation of quantum states in the frequency domain will pave the way toward the discovery of fascinating quantum phenomena and scalable quantum information processing.
arXiv Detail & Related papers (2023-11-01T07:14:27Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Characterization of Quantum Frequency Processors [0.0]
Frequency-bin qubits possess unique synergies with wavelength-multiplexed lightwave communications.
The quantum frequency processor (QFP) provides a scalable path for gate synthesis leveraging standard telecom components.
arXiv Detail & Related papers (2023-02-03T02:08:07Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - The effect of fast noise on the fidelity of trapped-ions quantum gates [0.0]
We study the effect of fast noise on the fidelity of one- and two-qubit gates in a trapped-ion system.
Our analysis can help in guiding the deign of quantum hardware platforms and gates, improving their fidelity towards fault-tolerant quantum computing.
arXiv Detail & Related papers (2022-08-06T19:37:00Z) - Bayesian tomography of high-dimensional on-chip biphoton frequency combs
with randomized measurements [0.20315704654772418]
We propose a novel solution that employs a pulse shaper and electro-optic phase modulator (EOM) to perform random operations instead of mixing in a prescribed manner.
We reconstruct the full density matrix of BFCs generated from an on-chip Si$_3$N$_4$ microring resonator(MRR) in up to an $8times8$ of a two-qudit Hilbert space.
arXiv Detail & Related papers (2021-08-09T15:47:44Z) - Stabilization of Qubit Relaxation Rates by Frequency Modulation [68.8204255655161]
Temporal, spectral, and sample-to-sample fluctuations in coherence properties of qubits form an outstanding challenge for the development of upscaled fault-tolerant quantum computers.
A ubiquitous source for these fluctuations in superconducting qubits is a set of atomic-scale defects with a two-level structure.
We show that frequency modulation of a qubit or, alternatively, of the two-level defects, leads to averaging of the qubit relaxation rate over a wide interval of frequencies.
arXiv Detail & Related papers (2021-04-08T11:32:03Z) - Transmon platform for quantum computing challenged by chaotic
fluctuations [55.41644538483948]
We investigate the stability of a variant of a many-body localized (MBL) phase for system parameters relevant to current quantum processors.
We find that these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.
arXiv Detail & Related papers (2020-12-10T19:00:03Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z) - Quantum Enhanced Measurement of an Optical Frequency Comb [0.0]
Measuring the spectral properties of an optical frequency comb is among the most fundamental tasks of precision metrology.
We demonstrate here single shot multi parameter estimation at and beyond the standard quantum limit.
Using a quantum frequency comb that consists of multiple squeezed states in a family of Hermite-Gaussian spectral/temporal modes, the signal-to-noise ratios of the mean energy and the central frequency measurements surpass the shot-noise limit by around 19% and 15%, respectively.
arXiv Detail & Related papers (2020-03-12T14:59:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.