論文の概要: Metaheuristic optimization of power and energy systems: underlying
principles and main issues of the 'rush to heuristics'
- arxiv url: http://arxiv.org/abs/2008.07491v1
- Date: Mon, 17 Aug 2020 17:33:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 02:48:36.302754
- Title: Metaheuristic optimization of power and energy systems: underlying
principles and main issues of the 'rush to heuristics'
- Title(参考訳): 電力・エネルギーシステムのメタヒューリスティック最適化--「ヒューリスティック・ルーシ」の基礎原理と課題
- Authors: Gianfranco Chicco and Andrea Mazza
- Abstract要約: 本稿では電力・エネルギーシステムへの適用について考察する。
メタヒューリスティックアルゴリズムを特徴付ける基本原理のセットが提示される。
本稿では,メタヒューリスティックなアルゴリズムを,特定の問題の制約に合うようにカスタマイズする方法について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the power and energy systems area, a progressive increase of literature
contributions containing applications of metaheuristic algorithms is occurring.
In many cases, these applications are merely aimed at proposing the testing of
an existing metaheuristic algorithm on a specific problem, claiming that the
proposed method is better than other methods based on weak comparisons. This
'rush to heuristics' does not happen in the evolutionary computation domain,
where the rules for setting up rigorous comparisons are stricter, but are
typical of the domains of application of the metaheuristics. This paper
considers the applications to power and energy systems, and aims at providing a
comprehensive view of the main issues concerning the use of metaheuristics for
global optimization problems. A set of underlying principles that characterize
the metaheuristic algorithms is presented. The customization of metaheuristic
algorithms to fit the constraints of specific problems is discussed. Some
weaknesses and pitfalls found in literature contributions are identified, and
specific guidelines are provided on how to prepare sound contributions on the
application of metaheuristic algorithms to specific problems.
- Abstract(参考訳): 電力・エネルギーシステム分野では、メタヒューリスティックアルゴリズムの適用を含む文献への貢献が進歩的に増加している。
多くの場合、これらのアプリケーションは単に特定の問題に対する既存のメタヒューリスティックアルゴリズムのテストを提案することを目的としており、弱い比較に基づく他の方法よりも優れた方法であると主張する。
この「ヒューリスティックスへのルーシュ」は、厳密な比較を行うための規則が厳格である進化計算領域では発生しないが、メタヒューリスティックスの応用の典型的な領域である。
本稿では,電力・エネルギーシステムへの応用を考察し,グローバル最適化問題に対するメタヒューリスティックスの利用に関する主要な課題を総合的に考察することを目的とする。
メタヒューリスティックなアルゴリズムを特徴付ける一連の基本原理が提示される。
特定の問題の制約を満たすためのメタヒューリスティックアルゴリズムのカスタマイズについて論じる。
文献のコントリビューションに見られるいくつかの弱点と落とし穴が特定され、メタヒューリスティックアルゴリズムの特定の問題への適用に関する具体的なガイドラインが提供される。
関連論文リスト
- What is Metaheuristics? A Primer for the Epidemiologists [1.2783241540121182]
本稿では,様々な分野の応用を含む基本的BATアルゴリズムとその変種について概説する。
特定の応用として、BATアルゴリズムを生体統計学的推定問題に適用し、既存のアルゴリズムに対して明らかな優位性を示す。
論文 参考訳(メタデータ) (2024-10-26T02:13:00Z) - Absolute Ranking: An Essential Normalization for Benchmarking Optimization Algorithms [0.0]
多くの問題における最適化アルゴリズムの性能評価は,数値スケールの多様性が原因で複雑な問題となる。
本稿では,この問題を広範囲に検討し,根本原因の根本原因を徹底的に解析する上で説得力のある事例を提示する。
本研究では,「絶対ランク付け」と呼ばれる新しい数学的モデルとサンプリングに基づく計算手法を提案する。
論文 参考訳(メタデータ) (2024-09-06T00:55:03Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
本稿では,主観的最適度と関連するリスク割り当ての公平性に着目し,重要な理論的側面について論じる。
私たちが提供しているアルゴリズムは、予備項の学習、二重表現の最適化、およびそれに対応する公正なリスク割り当てを可能にします。
論文 参考訳(メタデータ) (2023-02-02T22:16:49Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
メタヒューリスティックス(Metaheuristics)は、古典的なアプローチでは解決できない難解な問題を解くために使用される普遍的な最適化アルゴリズムである。
本稿では,キャストに基づく新しい社会認知メタヒューリスティックの構築を目標とし,このアルゴリズムのいくつかのバージョンを時間遅延システムモデルの最適化に適用する。
論文 参考訳(メタデータ) (2022-10-23T22:21:10Z) - Towards Target Sequential Rules [52.4562332499155]
ターゲット・シーケンシャル・ルール・マイニング(TaSRM)と呼ばれる効率的なアルゴリズムを提案する。
新たなアルゴリズムであるTaSRMとその変種は,既存のベースラインアルゴリズムと比較して実験性能がよいことを示す。
論文 参考訳(メタデータ) (2022-06-09T18:59:54Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
強化学習(RL)のための様々なアルゴリズムは、その収束率の劇的な変動を問題構造の関数として示している。
この研究は、観察されたパフォーマンスの違いについて、textitexを説明する保証を提供する。
次の自然なステップは、これらの理論的保証を実際に有用なガイドラインに変換することです。
論文 参考訳(メタデータ) (2022-01-21T04:25:35Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
エネルギーシステムの最適化問題は、強い非線形系の挙動と複数の競合する目的のために複雑である。
場合によっては、提案された最適解は、物理的性質や安全クリティカルな操作条件に関連する明示的な入力制約に従う必要がある。
本稿では,ブラックボックス問題に対する制約付き多目的最適化のためのツリーアンサンブルを用いた新しいデータ駆動戦略を提案する。
論文 参考訳(メタデータ) (2021-11-04T20:18:55Z) - Adaptive Discretization in Online Reinforcement Learning [9.560980936110234]
離散化に基づくアルゴリズムを設計する際の2つの大きな疑問は、離散化をどのように生成し、いつそれを洗練するかである。
オンライン強化学習のための木に基づく階層分割手法の統一的理論的解析を行う。
我々のアルゴリズムは操作制約に容易に適応し、我々の理論は3つの面のそれぞれに明示的な境界を与える。
論文 参考訳(メタデータ) (2021-10-29T15:06:15Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Causal Policy Gradients [6.123324869194195]
因果ポリシー勾配(CPG)は、重要な最先端アルゴリズムを分析する共通のフレームワークを提供する。
CPGは従来の政策の勾配を一般化し、問題領域の生成過程の事前知識を組み込む原則的な方法をもたらす。
論文 参考訳(メタデータ) (2021-02-20T14:51:12Z) - Maximal Algorithmic Caliber and Algorithmic Causal Network Inference:
General Principles of Real-World General Intelligence? [0.0]
遠方平衡熱力学の考え方と定式化は、計算過程の文脈に移植される。
最大Caliberの原理が提案され、どの計算処理を仮定すべきかについてのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-05-10T06:14:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。