論文の概要: Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles
- arxiv url: http://arxiv.org/abs/2111.03140v1
- Date: Thu, 4 Nov 2021 20:18:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-08 14:00:53.999156
- Title: Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles
- Title(参考訳): 木組によるエネルギー応用のための多目的制約最適化
- Authors: Alexander Thebelt, Calvin Tsay, Robert M. Lee, Nathan Sudermann-Merx,
David Walz, Tom Tranter and Ruth Misener
- Abstract要約: エネルギーシステムの最適化問題は、強い非線形系の挙動と複数の競合する目的のために複雑である。
場合によっては、提案された最適解は、物理的性質や安全クリティカルな操作条件に関連する明示的な入力制約に従う必要がある。
本稿では,ブラックボックス問題に対する制約付き多目的最適化のためのツリーアンサンブルを用いた新しいデータ駆動戦略を提案する。
- 参考スコア(独自算出の注目度): 55.23285485923913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy systems optimization problems are complex due to strongly non-linear
system behavior and multiple competing objectives, e.g. economic gain vs.
environmental impact. Moreover, a large number of input variables and different
variable types, e.g. continuous and categorical, are challenges commonly
present in real-world applications. In some cases, proposed optimal solutions
need to obey explicit input constraints related to physical properties or
safety-critical operating conditions. This paper proposes a novel data-driven
strategy using tree ensembles for constrained multi-objective optimization of
black-box problems with heterogeneous variable spaces for which underlying
system dynamics are either too complex to model or unknown. In an extensive
case study comprised of synthetic benchmarks and relevant energy applications
we demonstrate the competitive performance and sampling efficiency of the
proposed algorithm compared to other state-of-the-art tools, making it a useful
all-in-one solution for real-world applications with limited evaluation
budgets.
- Abstract(参考訳): エネルギーシステムの最適化問題は、強非線形システムの振舞いと複数の競合する目的、例えば、経済的利益と環境影響によって複雑である。
さらに、多数の入力変数と異なる変数タイプ、例えば連続型と分類型は、現実世界のアプリケーションに一般的に存在する課題である。
提案された最適解は、物理的性質や安全クリティカルな運転条件に関連する明示的な入力制約に従う必要がある。
本稿では,木アンサンブルを用いた新しいデータ駆動型手法を提案し,システム力学が複雑すぎる不均一な変数空間を持つブラックボックス問題に対する制約付き多目的最適化を提案する。
総合ベンチマークと関連するエネルギー応用からなる広範囲なケーススタディにおいて,提案手法の競合性能とサンプリング効率を他の最先端ツールと比較し,評価予算の少ない実世界のアプリケーションにとって有用なオールインワンソリューションとなることを示す。
関連論文リスト
- Smooth Tchebycheff Scalarization for Multi-Objective Optimization [15.047246588148495]
多目的最適化問題は、目的が相反することが多く、単一のソリューションでは最適化できない、多くの実世界のアプリケーションで見られる。
勾配に基づく多目的最適化のための軽量で効率的なスムーズなTchebycheffスキャラライズ手法を提案する。
論文 参考訳(メタデータ) (2024-02-29T12:03:05Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
本稿では,変分量子アルゴリズムを用いた制約付き最適化問題の解法を提案する。
我々は、キャッシュマネジメント問題という、金融の極めて関連性の高い現実世界の問題について、我々の提案を検証した。
実験の結果, 実現したソリューションのコスト, 特に局所最小値の回避に関して, 大幅な改善が見られた。
論文 参考訳(メタデータ) (2023-02-08T17:09:20Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
量子および量子に着想を得た最適化アルゴリズムは、学術ベンチマークや実世界の問題に適用した場合に有望な性能を示す。
しかし、QUBOソルバは単目的解法であり、複数の目的による問題の解法をより効率的にするためには、そのような多目的問題を単目的問題に変換する方法を決定する必要がある。
論文 参考訳(メタデータ) (2022-10-20T14:54:37Z) - Joint Entropy Search for Multi-objective Bayesian Optimization [0.0]
本稿では,統合エントロピー探索(Joint Entropy Search)と呼ばれるBOのための情報理論獲得関数を提案する。
本稿では, ハイパーボリュームとその重み付き変種の観点から, 合成および実世界の諸問題に対するこの新しいアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-10-06T13:19:08Z) - Sparse Polynomial Optimization: Theory and Practice [5.27013884159732]
本書は、この課題に重要な科学的意味を持って取り組むためのいくつかの取り組みを提示している。
これは計算複雑性の観点からうまくスケールする代替の最適化スキームを提供する。
制約のない問題や制約のない問題に対して、緩和の疎開的階層を提示する。
論文 参考訳(メタデータ) (2022-08-23T18:56:05Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
両目的探索問題として結果の多様化問題を再構成し,多目的進化アルゴリズム(EA)を用いて解くことを提案する。
GSEMOが最適時間近似比1/2$を達成できることを理論的に証明する。
目的関数が動的に変化すると、GSEMOはこの近似比をランニングタイムで維持することができ、Borodinらによって提案されたオープンな問題に対処する。
論文 参考訳(メタデータ) (2021-10-18T14:00:22Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
無線ネットワークにおけるリソース割り当てとトランシーバーは、通常最適化問題の解決によって設計される。
本稿では,変数最適化と関数最適化の両問題を解くための教師なし・教師なし学習フレームワークを紹介する。
論文 参考訳(メタデータ) (2020-01-03T11:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。