Learning Graph Edit Distance by Graph Neural Networks
- URL: http://arxiv.org/abs/2008.07641v1
- Date: Mon, 17 Aug 2020 21:49:59 GMT
- Title: Learning Graph Edit Distance by Graph Neural Networks
- Authors: Pau Riba, Andreas Fischer, Josep Llad\'os and Alicia Forn\'es
- Abstract summary: We propose a new framework able to combine the advances on deep metric learning with traditional approximations of the graph edit distance.
Our method employs a message passing neural network to capture the graph structure, and thus, leveraging this information for its use on a distance computation.
- Score: 3.002973807612758
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The emergence of geometric deep learning as a novel framework to deal with
graph-based representations has faded away traditional approaches in favor of
completely new methodologies. In this paper, we propose a new framework able to
combine the advances on deep metric learning with traditional approximations of
the graph edit distance. Hence, we propose an efficient graph distance based on
the novel field of geometric deep learning. Our method employs a message
passing neural network to capture the graph structure, and thus, leveraging
this information for its use on a distance computation. The performance of the
proposed graph distance is validated on two different scenarios. On the one
hand, in a graph retrieval of handwritten words~\ie~keyword spotting, showing
its superior performance when compared with (approximate) graph edit distance
benchmarks. On the other hand, demonstrating competitive results for graph
similarity learning when compared with the current state-of-the-art on a recent
benchmark dataset.
Related papers
- A Topology-aware Graph Coarsening Framework for Continual Graph Learning [8.136809136959302]
Continual learning on graphs tackles the problem of training a graph neural network (GNN) where graph data arrive in a streaming fashion.
Traditional continual learning strategies such as Experience Replay can be adapted to streaming graphs.
We propose TA$mathbbCO$, a (t)opology-(a)ware graph (co)arsening and (co)ntinual learning framework.
arXiv Detail & Related papers (2024-01-05T22:22:13Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Generative Graph Neural Networks for Link Prediction [13.643916060589463]
Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis.
This paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP.
Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.
arXiv Detail & Related papers (2022-12-31T10:07:19Z) - A Complex Network based Graph Embedding Method for Link Prediction [0.0]
We present a novel graph embedding approach based on the popularity-similarity and local attraction paradigms.
We show, using extensive experimental analysis, that the proposed method outperforms state-of-the-art graph embedding algorithms.
arXiv Detail & Related papers (2022-09-11T14:46:38Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - Deep Neural Matching Models for Graph Retrieval [0.0]
We focus on neural network based approaches for Graph matching and retrieving similargraphs from a corpus of graphs.
We explore methods which can soft predict the similaritybetween two graphs.
arXiv Detail & Related papers (2021-10-03T05:34:46Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Graph Edit Distance Reward: Learning to Edit Scene Graph [69.39048809061714]
We propose a new method to edit the scene graph according to the user instructions, which has never been explored.
To be specific, in order to learn editing scene graphs as the semantics given by texts, we propose a Graph Edit Distance Reward.
In the context of text-editing image retrieval, we validate the effectiveness of our method in CSS and CRIR dataset.
arXiv Detail & Related papers (2020-08-15T04:52:16Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.