Trust and Medical AI: The challenges we face and the expertise needed to
overcome them
- URL: http://arxiv.org/abs/2008.07734v1
- Date: Tue, 18 Aug 2020 04:17:58 GMT
- Title: Trust and Medical AI: The challenges we face and the expertise needed to
overcome them
- Authors: Thomas P. Quinn, Manisha Senadeera, Stephan Jacobs, Simon Coghlan, and
Vuong Le
- Abstract summary: Failures of medical AI could have serious consequences for clinical outcomes and the patient experience.
This article describes the major conceptual, technical, and humanistic challenges in medical AI.
It proposes a solution that hinges on the education and accreditation of new expert groups who specialize in the development, verification, and operation of medical AI technologies.
- Score: 15.07989177980542
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Artificial intelligence (AI) is increasingly of tremendous interest in the
medical field. However, failures of medical AI could have serious consequences
for both clinical outcomes and the patient experience. These consequences could
erode public trust in AI, which could in turn undermine trust in our healthcare
institutions. This article makes two contributions. First, it describes the
major conceptual, technical, and humanistic challenges in medical AI. Second,
it proposes a solution that hinges on the education and accreditation of new
expert groups who specialize in the development, verification, and operation of
medical AI technologies. These groups will be required to maintain trust in our
healthcare institutions.
Related papers
- FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
Concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI.
This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare.
arXiv Detail & Related papers (2023-08-11T10:49:05Z) - Ensuring Trustworthy Medical Artificial Intelligence through Ethical and
Philosophical Principles [4.705984758887425]
AI-based computer-assisted diagnosis and treatment tools can democratize healthcare by matching the clinical level or surpassing clinical experts.
The democratization of such AI tools can reduce the cost of care, optimize resource allocation, and improve the quality of care.
integrating AI into healthcare raises several ethical and philosophical concerns, such as bias, transparency, autonomy, responsibility, and accountability.
arXiv Detail & Related papers (2023-04-23T04:14:18Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Holding AI to Account: Challenges for the Delivery of Trustworthy AI in
Healthcare [8.351355707564153]
We examine the problem of trustworthy AI and explore what delivering this means in practice.
We argue here that this overlooks the important part played by organisational accountability in how people reason about and trust AI in socio-technical settings.
arXiv Detail & Related papers (2022-11-29T18:22:23Z) - Why we do need Explainable AI for Healthcare [0.0]
We argue that the Explainable AI research program is still central to human-machine interaction.
Despite valid concerns, we argue that the Explainable AI research program is still central to human-machine interaction.
arXiv Detail & Related papers (2022-06-30T15:35:50Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Explainable AI for medical imaging: Explaining pneumothorax diagnoses
with Bayesian Teaching [4.707325679181196]
We introduce and evaluate explanations based on Bayesian Teaching.
We find that medical experts exposed to explanations successfully predict the AI's diagnostic decisions.
These results show that Explainable AI can be used to support human-AI collaboration in medical imaging.
arXiv Detail & Related papers (2021-06-08T20:49:11Z) - Explainable AI meets Healthcare: A Study on Heart Disease Dataset [0.0]
The aim is to enlighten practitioners on the understandability and interpretability of explainable AI systems using a variety of techniques.
Our paper contains examples based on the heart disease dataset and elucidates on how the explainability techniques should be preferred to create trustworthiness.
arXiv Detail & Related papers (2020-11-06T05:18:43Z) - A Survey on Applications of Artificial Intelligence in Fighting Against
COVID-19 [75.84689958489724]
The COVID-19 pandemic caused by the SARS-CoV-2 virus has spread rapidly worldwide, leading to a global outbreak.
As a powerful tool against COVID-19, artificial intelligence (AI) technologies are widely used in combating this pandemic.
This survey presents medical and AI researchers with a comprehensive view of the existing and potential applications of AI technology in combating COVID-19.
arXiv Detail & Related papers (2020-07-04T22:48:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.