The promise and perils of AI in medicine
- URL: http://arxiv.org/abs/2505.06971v1
- Date: Sun, 11 May 2025 13:04:42 GMT
- Title: The promise and perils of AI in medicine
- Authors: Robert Sparrow, Joshua Hatherley,
- Abstract summary: We offer a survey, and initial evaluation, of hopes and fears about the applications of artificial intelligence in medicine.<n>We will highlight important concerns about privacy, surveillance, and bias in big data, as well as the risks of over trust in machines.<n>We will suggest that two questions, in particular, are deserving of further attention from philosophers and bioethicists.
- Score: 2.7624021966289605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: What does Artificial Intelligence (AI) have to contribute to health care? And what should we be looking out for if we are worried about its risks? In this paper we offer a survey, and initial evaluation, of hopes and fears about the applications of artificial intelligence in medicine. AI clearly has enormous potential as a research tool, in genomics and public health especially, as well as a diagnostic aid. It's also highly likely to impact on the organisational and business practices of healthcare systems in ways that are perhaps under-appreciated. Enthusiasts for AI have held out the prospect that it will free physicians up to spend more time attending to what really matters to them and their patients. We will argue that this claim depends upon implausible assumptions about the institutional and economic imperatives operating in contemporary healthcare settings. We will also highlight important concerns about privacy, surveillance, and bias in big data, as well as the risks of over trust in machines, the challenges of transparency, the deskilling of healthcare practitioners, the way AI reframes healthcare, and the implications of AI for the distribution of power in healthcare institutions. We will suggest that two questions, in particular, are deserving of further attention from philosophers and bioethicists. What does care look like when one is dealing with data as much as people? And, what weight should we give to the advice of machines in our own deliberations about medical decisions?
Related papers
- Explainable Artificial Intelligence for Medical Applications: A Review [42.33274794442013]
This article reviews recent research grounded in explainable artificial intelligence (XAI)<n>It focuses on medical practices within the visual, audio, and multimodal perspectives.<n>We endeavour to categorise and synthesise these practices, aiming to provide support and guidance for future researchers and healthcare professionals.
arXiv Detail & Related papers (2024-11-15T11:31:06Z) - The Dual Impact of Artificial Intelligence in Healthcare: Balancing Advancements with Ethical and Operational Challenges [1.3302498881305604]
This paper takes a close look at how AI is transforming areas such as diagnostics, precision medicine, and drug discovery.<n>Issues like patient privacy, safety, and the fairness of AI decisions are explored to understand whether AI in healthcare is a positive force, a potential risk, or perhaps both.
arXiv Detail & Related papers (2024-11-08T23:36:16Z) - From Military to Healthcare: Adopting and Expanding Ethical Principles
for Generative Artificial Intelligence [10.577932700903112]
Generative AI, an emerging technology designed to efficiently generate valuable information, holds great promise.
We propose GREAT PLEA ethical principles, encompassing governance, reliability, equity, accountability, traceability, privacy, lawfulness, empathy, and autonomy, for generative AI in healthcare.
arXiv Detail & Related papers (2023-08-04T16:22:06Z) - A Conceptual Algorithm for Applying Ethical Principles of AI to Medical Practice [5.005928809654619]
AI-powered tools are increasingly matching or exceeding specialist-level performance across multiple domains.<n>These systems promise to reduce disparities in care delivery across demographic, racial, and socioeconomic boundaries.<n>The democratization of such AI tools can reduce the cost of care, optimize resource allocation, and improve the quality of care.
arXiv Detail & Related papers (2023-04-23T04:14:18Z) - Towards the Use of Saliency Maps for Explaining Low-Quality
Electrocardiograms to End Users [45.62380752173638]
When using medical images for diagnosis, it is important that the images are of high quality.
In telemedicine, a common problem is that the quality issue is only flagged once the patient has left the clinic, meaning they must return in order to have the exam redone.
This paper reports on the development of an AI system for flagging and explaining low-quality medical images in real-time.
arXiv Detail & Related papers (2022-07-06T14:53:26Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Fairness via AI: Bias Reduction in Medical Information [3.254836540242099]
We propose a novel framework of Fairness via AI, inspired by insights from medical education, sociology and antiracism.
We propose using AI to study, detect and mitigate biased, harmful, and/or false health information that disproportionately hurts minority groups in society.
arXiv Detail & Related papers (2021-09-06T01:39:48Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Edge Intelligence for Empowering IoT-based Healthcare Systems [42.909808437026136]
This article highlights the benefits of edge intelligent technology, along with AI in smart healthcare systems.
A novel smart healthcare model is proposed to boost the utilization of AI and edge technology in smart healthcare systems.
arXiv Detail & Related papers (2021-03-22T19:35:06Z) - Explainable AI meets Healthcare: A Study on Heart Disease Dataset [0.0]
The aim is to enlighten practitioners on the understandability and interpretability of explainable AI systems using a variety of techniques.
Our paper contains examples based on the heart disease dataset and elucidates on how the explainability techniques should be preferred to create trustworthiness.
arXiv Detail & Related papers (2020-11-06T05:18:43Z) - Trust and Medical AI: The challenges we face and the expertise needed to
overcome them [15.07989177980542]
Failures of medical AI could have serious consequences for clinical outcomes and the patient experience.
This article describes the major conceptual, technical, and humanistic challenges in medical AI.
It proposes a solution that hinges on the education and accreditation of new expert groups who specialize in the development, verification, and operation of medical AI technologies.
arXiv Detail & Related papers (2020-08-18T04:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.