Shared MF: A privacy-preserving recommendation system
- URL: http://arxiv.org/abs/2008.07759v1
- Date: Tue, 18 Aug 2020 06:19:38 GMT
- Title: Shared MF: A privacy-preserving recommendation system
- Authors: Senci Ying
- Abstract summary: This paper proposes a shared matrix factorization scheme called SharedMF.
First, a distributed recommendation system is built, and then secret sharing technology is used to protect the privacy of local data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Matrix factorization is one of the most commonly used technologies in
recommendation system. With the promotion of recommendation system in
e-commerce shopping, online video and other aspects, distributed recommendation
system has been widely promoted, and the privacy problem of multi-source data
becomes more and more important. Based on Federated learning technology, this
paper proposes a shared matrix factorization scheme called SharedMF. Firstly, a
distributed recommendation system is built, and then secret sharing technology
is used to protect the privacy of local data. Experimental results show that
compared with the existing homomorphic encryption methods, our method can have
faster execution speed without privacy disclosure, and can better adapt to
recommendation scenarios with large amount of data.
Related papers
- Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - Hiding Your Awful Online Choices Made More Efficient and Secure: A New Privacy-Aware Recommender System [5.397825778465797]
This paper presents a novel privacy-aware recommender system that combines privacy-aware machine learning algorithms for practical scalability and efficiency with cryptographic primitives for solid privacy guarantees.
For the first time our method makes it feasible to compute private recommendations for datasets containing 100 million entries, even on memory-constrained low-power SOC (System on Chip) devices.
arXiv Detail & Related papers (2024-05-30T21:08:42Z) - Mirror Gradient: Towards Robust Multimodal Recommender Systems via
Exploring Flat Local Minima [54.06000767038741]
We analyze multimodal recommender systems from the novel perspective of flat local minima.
We propose a concise yet effective gradient strategy called Mirror Gradient (MG)
We find that the proposed MG can complement existing robust training methods and be easily extended to diverse advanced recommendation models.
arXiv Detail & Related papers (2024-02-17T12:27:30Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
We propose a user-consented federated recommendation system (UC-FedRec) to flexibly satisfy the different privacy needs of users.
UC-FedRec allows users to self-define their privacy preferences to meet various demands and makes recommendations with user consent.
arXiv Detail & Related papers (2023-12-23T09:44:57Z) - Semi-decentralized Federated Ego Graph Learning for Recommendation [58.21409625065663]
We propose a semi-decentralized federated ego graph learning framework for on-device recommendations, named SemiDFEGL.
The proposed framework is model-agnostic, meaning that it could be seamlessly integrated with existing graph neural network-based recommendation methods and privacy protection techniques.
arXiv Detail & Related papers (2023-02-10T03:57:45Z) - Decentralized Matrix Factorization with Heterogeneous Differential
Privacy [2.4743508801114444]
We propose a novel Heterogeneous Differentially Private Matrix Factorization algorithm (denoted as HDPMF) for untrusted recommender.
Our framework uses modified stretching mechanism with an innovative rescaling scheme to achieve better trade off between privacy and accuracy.
arXiv Detail & Related papers (2022-12-01T06:48:18Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z) - Practical and Secure Federated Recommendation with Personalized Masks [24.565751694946062]
Federated recommendation is a new notion of private distributed recommender systems.
Current recommender systems mainly utilize homomorphic encryption and differential privacy methods.
In this paper, we propose a new federated recommendation framework, named federated masked matrix factorization.
arXiv Detail & Related papers (2021-08-18T07:12:23Z) - A Hybrid Recommender System for Recommending Smartphones to Prospective
Customers [0.7310043452300736]
Hybrid recommender systems combine multiple recommendation strategies in different ways to benefit from their complementary advantages.
Some hybrid recommender systems have combined collaborative filtering and content-based approaches to build systems that are more robust.
We propose a hybrid recommender system, which combines Alternative Least Squares (ALS) based collaborative filtering with deep learning to enhance recommendation performance.
arXiv Detail & Related papers (2021-05-26T23:10:51Z) - A Federated Multi-View Deep Learning Framework for Privacy-Preserving
Recommendations [25.484225182093947]
Privacy-preserving recommendations are gaining momentum due to concerns over user privacy and data security.
FedRec algorithms have been proposed to realize personalized privacy-preserving recommendations.
This paper presents FLMV-DSSM, a generic content-based federated multi-view recommendation framework.
arXiv Detail & Related papers (2020-08-25T04:19:40Z) - Meta Matrix Factorization for Federated Rating Predictions [84.69112252208468]
Federated recommender systems have distinct advantages in terms of privacy protection over traditional recommender systems.
Previous work on federated recommender systems does not fully consider the limitations of storage, RAM, energy and communication bandwidth in a mobile environment.
Our goal in this paper is to design a novel federated learning framework for rating prediction (RP) for mobile environments.
arXiv Detail & Related papers (2019-10-22T16:29:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.