Research on the Design of a Short Video Recommendation System Based on Multimodal Information and Differential Privacy
- URL: http://arxiv.org/abs/2504.08751v1
- Date: Thu, 27 Mar 2025 22:56:41 GMT
- Title: Research on the Design of a Short Video Recommendation System Based on Multimodal Information and Differential Privacy
- Authors: Haowei Yang, Lei Fu, Qingyi Lu, Yue Fan, Tianle Zhang, Ruohan Wang,
- Abstract summary: This paper proposes a short video recommendation system based on multimodal information and differential privacy protection.<n>Deep learning models are used for feature extraction and fusion of multimodal data, effectively improving recommendation accuracy.<n>A differential privacy protection mechanism is designed to ensure user data privacy while maintaining system performance.
- Score: 9.571883876747314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of short video platforms, recommendation systems have become key technologies for improving user experience and enhancing platform engagement. However, while short video recommendation systems leverage multimodal information (such as images, text, and audio) to improve recommendation effectiveness, they also face the severe challenge of user privacy leakage. This paper proposes a short video recommendation system based on multimodal information and differential privacy protection. First, deep learning models are used for feature extraction and fusion of multimodal data, effectively improving recommendation accuracy. Then, a differential privacy protection mechanism suitable for recommendation scenarios is designed to ensure user data privacy while maintaining system performance. Experimental results show that the proposed method outperforms existing mainstream approaches in terms of recommendation accuracy, multimodal fusion effectiveness, and privacy protection performance, providing important insights for the design of recommendation systems for short video platforms.
Related papers
- Interactive Visualization Recommendation with Hier-SUCB [52.11209329270573]
We propose an interactive personalized visualization recommendation (PVisRec) system that learns on user feedback from previous interactions.<n>For more interactive and accurate recommendations, we propose Hier-SUCB, a contextual semi-bandit in the PVisRec setting.
arXiv Detail & Related papers (2025-02-05T17:14:45Z) - A Model-based Multi-Agent Personalized Short-Video Recommender System [19.03089585214444]
We propose a RL-based industrial short-video recommender ranking framework.
Our proposed framework adopts a model-based learning approach to alleviate the sample selection bias.
Our proposed approach has been deployed in our real large-scale short-video sharing platform.
arXiv Detail & Related papers (2024-05-03T04:34:36Z) - A Large Language Model Enhanced Sequential Recommender for Joint Video and Comment Recommendation [77.42486522565295]
We propose a novel recommendation approach called LSVCR to jointly conduct personalized video and comment recommendation.
Our approach consists of two key components, namely sequential recommendation (SR) model and supplemental large language model (LLM) recommender.
In particular, we achieve a significant overall gain of 4.13% in comment watch time.
arXiv Detail & Related papers (2024-03-20T13:14:29Z) - Mirror Gradient: Towards Robust Multimodal Recommender Systems via
Exploring Flat Local Minima [54.06000767038741]
We analyze multimodal recommender systems from the novel perspective of flat local minima.
We propose a concise yet effective gradient strategy called Mirror Gradient (MG)
We find that the proposed MG can complement existing robust training methods and be easily extended to diverse advanced recommendation models.
arXiv Detail & Related papers (2024-02-17T12:27:30Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
We propose a user-consented federated recommendation system (UC-FedRec) to flexibly satisfy the different privacy needs of users.
UC-FedRec allows users to self-define their privacy preferences to meet various demands and makes recommendations with user consent.
arXiv Detail & Related papers (2023-12-23T09:44:57Z) - Impression-Aware Recommender Systems [53.48892326556546]
We present a systematic literature review on recommender systems using impressions.<n>We define a theoretical framework to delimit recommender systems using impressions and a novel paradigm for personalized recommendations, called impression-aware recommender systems.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - Two-Stage Constrained Actor-Critic for Short Video Recommendation [23.12631658373264]
We formulate the problem of short video recommendation as a Constrained Markov Decision Process (CMDP)
We propose a novel two-stage constrained actor-critic method to optimize each auxiliary signal.
Our method significantly outperforms other baselines in terms of both watch time and interactions.
arXiv Detail & Related papers (2023-02-03T12:02:54Z) - Constrained Reinforcement Learning for Short Video Recommendation [18.492477839791274]
Short videos on social media platforms pose new challenges to optimize recommender systems.
We propose a two-stage reinforcement learning approach based on actor-critic framework.
Our approach has been fully launched in the production system to optimize user experiences.
arXiv Detail & Related papers (2022-05-26T09:36:20Z) - Heterogeneous Demand Effects of Recommendation Strategies in a Mobile
Application: Evidence from Econometric Models and Machine-Learning
Instruments [73.7716728492574]
We study the effectiveness of various recommendation strategies in the mobile channel and their impact on consumers' utility and demand levels for individual products.
We find significant differences in effectiveness among various recommendation strategies.
We develop novel econometric instruments that capture product differentiation (isolation) based on deep-learning models of user-generated reviews.
arXiv Detail & Related papers (2021-02-20T22:58:54Z) - Shared MF: A privacy-preserving recommendation system [0.0]
This paper proposes a shared matrix factorization scheme called SharedMF.
First, a distributed recommendation system is built, and then secret sharing technology is used to protect the privacy of local data.
arXiv Detail & Related papers (2020-08-18T06:19:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.