On the Convergence of Consensus Algorithms with Markovian Noise and
Gradient Bias
- URL: http://arxiv.org/abs/2008.07841v3
- Date: Thu, 5 Nov 2020 14:46:56 GMT
- Title: On the Convergence of Consensus Algorithms with Markovian Noise and
Gradient Bias
- Authors: Hoi-To Wai
- Abstract summary: This paper presents a finite time convergence analysis for a decentralized approximation (SA) scheme.
The scheme generalizes several algorithms for decentralized machine learning and multi- reinforcement learning.
- Score: 25.775517797956237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a finite time convergence analysis for a decentralized
stochastic approximation (SA) scheme. The scheme generalizes several algorithms
for decentralized machine learning and multi-agent reinforcement learning. Our
proof technique involves separating the iterates into their respective
consensual parts and consensus error. The consensus error is bounded in terms
of the stationarity of the consensual part, while the updates of the consensual
part can be analyzed as a perturbed SA scheme. Under the Markovian noise and
time varying communication graph assumptions, the decentralized SA scheme has
an expected convergence rate of ${\cal O}(\log T/ \sqrt{T} )$, where $T$ is the
iteration number, in terms of squared norms of gradient for nonlinear SA with
smooth but non-convex cost function. This rate is comparable to the best known
performances of SA in a centralized setting with a non-convex potential
function.
Related papers
- Stochastic Approximation with Delayed Updates: Finite-Time Rates under Markovian Sampling [73.5602474095954]
We study the non-asymptotic performance of approximation schemes with delayed updates under Markovian sampling.
Our theoretical findings shed light on the finite-time effects of delays for a broad class of algorithms.
arXiv Detail & Related papers (2024-02-19T03:08:02Z) - Convergence Analysis of Decentralized ASGD [1.8710230264817358]
We present a novel convergence-rate analysis for decentralized asynchronous SGD (DASGD) which does not require partial synchronization among nodes nor restrictive network topologies.
Our convergence proof holds for a fixed stepsize and any nonsmooth, homogeneous, L-shaped objective function.
arXiv Detail & Related papers (2023-09-07T14:50:31Z) - Finite-Time Analysis of Fully Decentralized Single-Timescale
Actor-Critic [4.94128206910124]
We introduce a fully decentralized Actor-Critic (AC) algorithm, where actor, critic, and global reward estimator are updated in an alternating manner.
We show that our algorithm has sample complexity of $tildemathcalO(epsilon-2)$ under Markovian sampling.
We also provide a local action privacy-preserving version of our algorithm and its analysis.
arXiv Detail & Related papers (2022-06-12T13:14:14Z) - DASHA: Distributed Nonconvex Optimization with Communication
Compression, Optimal Oracle Complexity, and No Client Synchronization [77.34726150561087]
We develop and analyze DASHA: a new family of methods for noneps distributed optimization problems.
Unlike MARINA, the new methods DASHA, DASHA-MVR send compressed vectors only and never synchronize the nodes, which makes them more practical for learning.
arXiv Detail & Related papers (2022-02-02T20:10:40Z) - Acceleration in Distributed Optimization Under Similarity [72.54787082152278]
We study distributed (strongly convex) optimization problems over a network of agents, with no centralized nodes.
An $varepsilon$-solution is achieved in $tildemathcalrhoObig(sqrtfracbeta/mu (1-)log1/varepsilonbig)$ number of communications steps.
This rate matches (up to poly-log factors) for the first time lower complexity communication bounds of distributed gossip-algorithms applied to the class of problems of interest.
arXiv Detail & Related papers (2021-10-24T04:03:00Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
We introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO.
We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size.
Our convergence guarantees hold under the arbitrary sampling paradigm, and we give insights into the complexity of minibatching.
arXiv Detail & Related papers (2021-06-30T18:32:46Z) - Convergence Analysis of Nonconvex Distributed Stochastic Zeroth-order
Coordinate Method [3.860616339202303]
This paper investigates the distributed non optimization problem of minimizing a global cost function formed by the summation of $ZOn$ local cost functions.
Agents approximate their own ZO coordinate method to solve the problem.
arXiv Detail & Related papers (2021-03-24T03:07:46Z) - Stochastic optimization with momentum: convergence, fluctuations, and
traps avoidance [0.0]
In this paper, a general optimization procedure is studied, unifying several variants of the gradient descent such as, among others, the heavy ball method, the Nesterov Accelerated Gradient (S-NAG), and the widely used Adam method.
The avoidance is studied as a noisy discretization of a non-autonomous ordinary differential equation.
arXiv Detail & Related papers (2020-12-07T19:14:49Z) - Sample Complexity Bounds for Two Timescale Value-based Reinforcement
Learning Algorithms [65.09383385484007]
Two timescale approximation (SA) has been widely used in value-based reinforcement learning algorithms.
We study the non-asymptotic convergence rate of two timescale linear and nonlinear TDC and Greedy-GQ algorithms.
arXiv Detail & Related papers (2020-11-10T11:36:30Z) - Non-asymptotic Convergence of Adam-type Reinforcement Learning
Algorithms under Markovian Sampling [56.394284787780364]
This paper provides the first theoretical convergence analysis for two fundamental RL algorithms of policy gradient (PG) and temporal difference (TD) learning.
Under general nonlinear function approximation, PG-AMSGrad with a constant stepsize converges to a neighborhood of a stationary point at the rate of $mathcalO(log T/sqrtT)$.
Under linear function approximation, TD-AMSGrad with a constant stepsize converges to a neighborhood of the global optimum at the rate of $mathcalO(log T/sqrtT
arXiv Detail & Related papers (2020-02-15T00:26:49Z) - Finite Time Analysis of Linear Two-timescale Stochastic Approximation
with Markovian Noise [28.891930079358954]
We provide a finite-time analysis for linear two timescale SA scheme.
Our bounds show that there is no discrepancy in the convergence rate between Markovian and martingale noise.
We present an expansion of the expected error with a matching lower bound.
arXiv Detail & Related papers (2020-02-04T13:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.