論文の概要: Relational Reflection Entity Alignment
- arxiv url: http://arxiv.org/abs/2008.07962v1
- Date: Tue, 18 Aug 2020 14:49:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 21:03:18.113745
- Title: Relational Reflection Entity Alignment
- Title(参考訳): リレーショナルリフレクションエンティティアライメント
- Authors: Xin Mao, Wenting Wang, Huimin Xu, Yuanbin Wu, Man Lan
- Abstract要約: エンティティアライメントは知識グラフ(KG)からエンティティペアを特定する
エンティティアライメントにGNNを導入することで、最近のモデルのアーキテクチャはますます複雑になっています。
本稿では,既存のエンティティアライメント手法を統一的なフレームワークであるShape-Builder & Alignmentに抽象化する。
- 参考スコア(独自算出の注目度): 28.42319743737994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity alignment aims to identify equivalent entity pairs from different
Knowledge Graphs (KGs), which is essential in integrating multi-source KGs.
Recently, with the introduction of GNNs into entity alignment, the
architectures of recent models have become more and more complicated. We even
find two counter-intuitive phenomena within these methods: (1) The standard
linear transformation in GNNs is not working well. (2) Many advanced KG
embedding models designed for link prediction task perform poorly in entity
alignment. In this paper, we abstract existing entity alignment methods into a
unified framework, Shape-Builder & Alignment, which not only successfully
explains the above phenomena but also derives two key criteria for an ideal
transformation operation. Furthermore, we propose a novel GNNs-based method,
Relational Reflection Entity Alignment (RREA). RREA leverages Relational
Reflection Transformation to obtain relation specific embeddings for each
entity in a more efficient way. The experimental results on real-world datasets
show that our model significantly outperforms the state-of-the-art methods,
exceeding by 5.8%-10.9% on Hits@1.
- Abstract(参考訳): エンティティアライメントは、異なる知識グラフ(KG)から同等のエンティティペアを識別することを目的としている。
近年、GNNがエンティティアライメントに導入されたことにより、最近のモデルのアーキテクチャはますます複雑になっている。
これらの方法では、(1)gnnの標準線型変換はうまく機能していない。
2)リンク予測タスク用に設計された多くの高度なkg埋め込みモデルは、エンティティアライメントが不十分である。
本稿では、既存のエンティティアライメント手法を、上記の現象をうまく説明できるだけでなく、理想的な変換操作のための2つの重要な基準を導出する、シェープビルダーとアライメントという統一フレームワークに抽象化する。
さらに,新しいGNNに基づくリレーショナルリフレクション・エンティティアライメント(RREA)を提案する。
RREAはリレーショナル・リフレクション・トランスフォーメーション(Relational Reflection Transformation)を利用して、より効率的な方法で各エンティティに対する関係特異的な埋め込みを得る。
実世界のデータセットにおける実験結果は、hit@1で5.8%-10.9%を超える最先端の手法を大幅に上回っていることを示している。
関連論文リスト
- Attr-Int: A Simple and Effective Entity Alignment Framework for Heterogeneous Knowledge Graphs [9.725601872648566]
エンティティアライメント(EA)とは、異なる知識グラフ(KG)内のエンティティをリンクすることである。
本稿では, 異種KG間の整合性の問題について検討し, 対処する。
本稿では,Attr-Intと呼ばれるシンプルで効果的なエンティティアライメントフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T10:16:56Z) - OneNet: A Fine-Tuning Free Framework for Few-Shot Entity Linking via Large Language Model Prompting [49.655711022673046]
OneNetは、大規模言語モデル(LLM)の少数ショット学習機能を利用する革新的なフレームワークで、微調整は不要である。
1)無関係なエンティティを要約してフィルタリングすることで入力を単純化するエンティティリダクションプロセッサ,(2)コンテキスト的キューと事前知識を組み合わせて正確なエンティティリンクを行うデュアルパースペクティブエンティティリンカ,(3)エンティティリンク推論における幻覚を緩和するユニークな一貫性アルゴリズムを利用するエンティティコンセンサス判定器,である。
論文 参考訳(メタデータ) (2024-10-10T02:45:23Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - Improving Knowledge Graph Entity Alignment with Graph Augmentation [11.1094009195297]
異なる知識グラフ(KG)をまたいだ等価エンティティをリンクするエンティティアライメント(EA)は、知識融合において重要な役割を果たす。
近年、グラフニューラルネットワーク(GNN)は、多くの埋め込みベースのEA手法でうまく適用されている。
グラフの強化により、マージンベースのアライメント学習とコントラッシブなエンティティ表現学習のための2つのグラフビューを作成する。
論文 参考訳(メタデータ) (2023-04-28T01:22:47Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
本研究の目的は, 細粒度製品カテゴリを対象とした, 弱制御型マルチモーダル・インスタンスレベルの製品検索である。
まず、Product1Mデータセットをコントリビュートし、2つの実際のインスタンスレベルの検索タスクを定義します。
我々は、マルチモーダルデータから重要な概念情報を組み込むことができるより効果的なクロスモーダルモデルを訓練するために活用する。
論文 参考訳(メタデータ) (2022-06-17T15:40:45Z) - Informed Multi-context Entity Alignment [27.679124991733907]
Informed Multi-context Entity Alignment (IMEA)モデルを提案する。
特にTransformerを導入し、関係、経路、近傍のコンテキストを柔軟にキャプチャする。
総論的推論は、埋め込み類似性と関係性/整合性の両方の機能に基づいてアライメント確率を推定するために用いられる。
いくつかのベンチマークデータセットの結果は、既存の最先端エンティティアライメント手法と比較して、IMEAモデルの優位性を示している。
論文 参考訳(メタデータ) (2022-01-02T06:29:30Z) - EchoEA: Echo Information between Entities and Relations for Entity
Alignment [1.1470070927586016]
本稿では,エンティティ情報を関係に拡散し,エンティティにエコーバックする自己認識機構を活用した新しいフレームワーク Echo Entity Alignment (EchoEA) を提案する。
3つの実世界のクロスランガルデータセットの実験結果は、平均して96%で安定している。
論文 参考訳(メタデータ) (2021-07-07T07:34:21Z) - Neural Production Systems [90.75211413357577]
視覚環境は、異なるオブジェクトまたはエンティティから構成される。
イメージをエンティティに分割するために、ディープラーニング研究者は構造的誘導バイアスを提案した。
私たちは認知科学からインスピレーションを得て、一連のルールテンプレートからなる古典的なアプローチを復活させます。
このアーキテクチャは柔軟でダイナミックな制御フローを実現し、エンティティ固有およびルールベースの情報を分解するのに役立つ。
論文 参考訳(メタデータ) (2021-03-02T18:53:20Z) - RAGA: Relation-aware Graph Attention Networks for Global Entity
Alignment [14.287681294725438]
実体と関係の相互作用を捉えるために,Relation-aware Graph Attention Networksに基づく新しいフレームワークを提案する。
本フレームワークでは,エンティティ情報を関係に分散し,関係情報をエンティティに集約する自己認識機構を採用している。
論文 参考訳(メタデータ) (2021-03-01T06:30:51Z) - HittER: Hierarchical Transformers for Knowledge Graph Embeddings [85.93509934018499]
複雑な知識グラフにおける実体と関係の表現を学習するためにHittを提案する。
実験結果から,Hittは複数リンク予測において最先端の新たな結果が得られることがわかった。
さらに,HittをBERTに統合する簡単なアプローチを提案し,その効果を2つのFreebaseファクトイド対応データセットで示す。
論文 参考訳(メタデータ) (2020-08-28T18:58:15Z) - Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization [53.99850033746663]
弱教師付き画像ラベルを持つ対象クラスにおける局所化モデル学習の問題点について検討する。
本研究では,対象関数のみの学習は知識伝達の弱い形態であると主張する。
COCOおよびILSVRC 2013検出データセットの実験では、ペアワイズ類似度関数を含むことにより、ローカライズモデルの性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-03-18T17:53:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。