論文の概要: How2Sign: A Large-scale Multimodal Dataset for Continuous American Sign
Language
- arxiv url: http://arxiv.org/abs/2008.08143v2
- Date: Thu, 1 Apr 2021 16:54:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 21:47:57.985098
- Title: How2Sign: A Large-scale Multimodal Dataset for Continuous American Sign
Language
- Title(参考訳): How2Sign: 継続的アメリカ手話のための大規模マルチモーダルデータセット
- Authors: Amanda Duarte, Shruti Palaskar, Lucas Ventura, Deepti Ghadiyaram,
Kenneth DeHaan, Florian Metze, Jordi Torres and Xavier Giro-i-Nieto
- Abstract要約: How2Signは、マルチモーダルかつマルチビューの連続した米国手話(ASL)データセットである。
80時間以上の手話ビデオの並列コーパスと、音声、英語の書き起こし、深さなどに対応する一連のモダリティから構成される。
3時間のサブセットがパノプティカル・スタジオで記録され、詳細な3Dポーズ推定が可能となった。
- 参考スコア(独自算出の注目度): 37.578776156503906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the factors that have hindered progress in the areas of sign language
recognition, translation, and production is the absence of large annotated
datasets. Towards this end, we introduce How2Sign, a multimodal and multiview
continuous American Sign Language (ASL) dataset, consisting of a parallel
corpus of more than 80 hours of sign language videos and a set of corresponding
modalities including speech, English transcripts, and depth. A three-hour
subset was further recorded in the Panoptic studio enabling detailed 3D pose
estimation. To evaluate the potential of How2Sign for real-world impact, we
conduct a study with ASL signers and show that synthesized videos using our
dataset can indeed be understood. The study further gives insights on
challenges that computer vision should address in order to make progress in
this field.
Dataset website: http://how2sign.github.io/
- Abstract(参考訳): 手話認識、翻訳、生産の分野の進展を妨げる要因の1つは、大規模な注釈付きデータセットが存在しないことである。
この目的に向けて,80時間以上の手話ビデオの並列コーパスと,音声や英語の書き起こし,奥行きなどに対応する一連のモダリティからなる,マルチモーダルかつマルチビューの連続アメリカ手話(asl)データセットであるhow2signを紹介する。
さらに3時間のサブセットがpanoptic studioに記録され、詳細な3dポーズ推定が可能になった。
実世界の衝撃に対するHow2Signの可能性を評価するため、ASLシグナーを用いて研究を行い、我々のデータセットを用いた合成ビデオが実際に理解可能であることを示す。
この研究は、この分野で進歩するためにコンピュータビジョンが取り組むべき課題についてさらに洞察を与える。
Dataset Webサイト: http://how2sign.github.io/
関連論文リスト
- SCOPE: Sign Language Contextual Processing with Embedding from LLMs [49.5629738637893]
世界中の約7000万人の聴覚障害者が使用する手話は、視覚的および文脈的な情報を伝える視覚言語である。
視覚に基づく手話認識(SLR)と翻訳(SLT)の現在の手法は、限られたデータセットの多様性と文脈に関連のある情報の無視により、対話シーンに苦慮している。
SCOPEは、コンテキスト認識型ビジョンベースSLRおよびSLTフレームワークである。
論文 参考訳(メタデータ) (2024-09-02T08:56:12Z) - iSign: A Benchmark for Indian Sign Language Processing [5.967764101493575]
iSignは、Indian Sign Language (ISL) 処理のベンチマークである。
我々は118K以上のビデオ文/フレーズペアを持つ最大のISL- Englishデータセットの1つをリリースする。
ISLの動作に関するいくつかの言語的な洞察を、提案したベンチマークに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-07-07T15:07:35Z) - SignVTCL: Multi-Modal Continuous Sign Language Recognition Enhanced by
Visual-Textual Contrastive Learning [51.800031281177105]
SignVTCLは、視覚・テキストのコントラスト学習によって強化された連続手話認識フレームワークである。
マルチモーダルデータ(ビデオ、キーポイント、光学フロー)を同時に統合し、統一された視覚バックボーンをトレーニングする。
従来の方法と比較して最先端の結果が得られます。
論文 参考訳(メタデータ) (2024-01-22T11:04:55Z) - Improving Continuous Sign Language Recognition with Cross-Lingual Signs [29.077175863743484]
本稿では,多言語手話コーパスを用いた連続手話認識の実現可能性について検討する。
まず、2つのデータセットに現れる独立した記号を含む2つの手話辞書を構築します。
次に、適切に最適化された手話認識モデルを用いて、2つの手話間の手話間の手話マッピングを同定する。
論文 参考訳(メタデータ) (2023-08-21T15:58:47Z) - Slovo: Russian Sign Language Dataset [83.93252084624997]
本稿では,クラウドソーシングプラットフォームを用いたロシア手話(RSL)ビデオデータセットであるSlovoについて述べる。
データセットには20,000のFullHDレコードが含まれており、194人の署名者が受信した1,000の独立したRSLジェスチャーに分割されている。
論文 参考訳(メタデータ) (2023-05-23T21:00:42Z) - LSA-T: The first continuous Argentinian Sign Language dataset for Sign
Language Translation [52.87578398308052]
手話翻訳(SLT)は、人間とコンピュータの相互作用、コンピュータビジョン、自然言語処理、機械学習を含む活発な研究分野である。
本稿では,最初の連続的アルゼンチン手話(LSA)データセットを提案する。
このビデオには、CN Sordos YouTubeチャンネルから抽出されたLCAの14,880の文レベルのビデオと、各署名者のためのラベルとキーポイントアノテーションが含まれている。
論文 参考訳(メタデータ) (2022-11-14T14:46:44Z) - SDW-ASL: A Dynamic System to Generate Large Scale Dataset for Continuous
American Sign Language [0.0]
ASLデータセットの最初のバージョンは、30k文、416k単語、18k単語の語彙を合計104時間でリリースしています。
これはビデオの持続時間で現在まで発行されている最大の連続手話データセットである。
論文 参考訳(メタデータ) (2022-10-13T07:08:00Z) - ASL-Homework-RGBD Dataset: An annotated dataset of 45 fluent and
non-fluent signers performing American Sign Language homeworks [32.3809065803553]
このデータセットには、American Sign Language (ASL) を使用した、流動的で非流動的なシグナのビデオが含まれている。
受講生は45名、受講生は45名、受講生は45名であった。
データは、文法的特徴や非マニュアルマーカーを含む署名のいくつかの側面を特定するために注釈付けされている。
論文 参考訳(メタデータ) (2022-07-08T17:18:49Z) - Watch, read and lookup: learning to spot signs from multiple supervisors [99.50956498009094]
孤立した手話のビデオが与えられた場合、我々のタスクは、連続的かつ協調的な手話ビデオで署名されたか、どこで署名されたかを特定することである。
我々は,(1)既存の粗末なラベル付き映像を見ること,(2)追加の弱スーパービジョンを提供する関連字幕を読むこと,(3)視覚手話辞書で単語を検索すること,の3つを用いて,利用可能な複数のタイプの監督手法を用いてモデルを訓練する。
これらの3つのタスクは、ノイズコントラスト推定と多重インスタンス学習の原則を用いて統合学習フレームワークに統合される。
論文 参考訳(メタデータ) (2020-10-08T14:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。