Fingerprinting Search Keywords over HTTPS at Scale
- URL: http://arxiv.org/abs/2008.08161v1
- Date: Tue, 18 Aug 2020 21:24:52 GMT
- Title: Fingerprinting Search Keywords over HTTPS at Scale
- Authors: Junhua Yan, Hasan Faik Alan and Jasleen Kaur
- Abstract summary: fingerprinting the search keywords issued by a user on popular web search engines is a significant threat to user privacy.
We study the impact of several factors, including client platform diversity, choice of search engine, feature sets and classification frameworks.
Our analysis reveals several insights into the threat of keyword fingerprinting in modern HTTPS traffic.
- Score: 0.5549359079450177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The possibility of fingerprinting the search keywords issued by a user on
popular web search engines is a significant threat to user privacy. This threat
has received surprisingly little attention in the network traffic analysis
literature. In this work, we consider the problem of keyword fingerprinting of
HTTPS traffic -- we study the impact of several factors, including client
platform diversity, choice of search engine, feature sets as well as
classification frameworks. We conduct both closed-world and open-world
evaluations using nearly 4 million search queries collected over a period of
three months. Our analysis reveals several insights into the threat of keyword
fingerprinting in modern HTTPS traffic.
Related papers
- Fingerprinting and Tracing Shadows: The Development and Impact of Browser Fingerprinting on Digital Privacy [55.2480439325792]
Browser fingerprinting is a growing technique for identifying and tracking users online without traditional methods like cookies.
This paper gives an overview by examining the various fingerprinting techniques and analyzes the entropy and uniqueness of the collected data.
arXiv Detail & Related papers (2024-11-18T20:32:31Z) - Identified-and-Targeted: The First Early Evidence of the Privacy-Invasive Use of Browser Fingerprinting for Online Tracking [10.98528003128308]
It is imperative to address the mounting concerns regarding the utilization of browser fingerprinting in the realm of online advertising.
This paper introduces a new framework FPTrace'' designed to identify alterations in advertisements resulting from adjustments in browser fingerprinting settings.
Using FPTrace we conduct a large-scale measurement study to identify whether browser fingerprinting is being used for the purpose of user tracking and ad targeting.
arXiv Detail & Related papers (2024-09-24T01:39:16Z) - Ranking Manipulation for Conversational Search Engines [7.958276719131612]
We study the impact of prompt injections on the ranking order of sources referenced by conversational search engines.
We present a tree-of-attacks-based jailbreaking technique which reliably promotes low-ranked products.
arXiv Detail & Related papers (2024-06-05T19:14:21Z) - Assessing Web Fingerprinting Risk [2.144574168644798]
Browser fingerprints are device-specific identifiers that enable covert tracking of users even when cookies are disabled.
Previous research has established entropy, a measure of information, as the key metric for quantifying fingerprinting risk.
We provide the first study of browser fingerprinting which addresses the limitations of prior work.
arXiv Detail & Related papers (2024-03-22T20:34:41Z) - Feature Analysis of Encrypted Malicious Traffic [3.3148826359547514]
In recent years there has been a dramatic increase in the number of malware attacks that use encrypted HTTP traffic for self-propagation or communication.
Antivirus software and firewalls typically will not have access to encryption keys, and therefore direct detection of encrypted data is unlikely to succeed.
Previous work has shown that traffic analysis can provide indications of malicious intent, even in cases where the underlying data remains encrypted.
arXiv Detail & Related papers (2023-12-06T12:04:28Z) - To Wake-up or Not to Wake-up: Reducing Keyword False Alarm by Successive
Refinement [58.96644066571205]
We show that existing deep keyword spotting mechanisms can be improved by Successive Refinement.
We show across multiple models with size ranging from 13K parameters to 2.41M parameters, the successive refinement technique reduces FA by up to a factor of 8.
Our proposed approach is "plug-and-play" and can be applied to any deep keyword spotting model.
arXiv Detail & Related papers (2023-04-06T23:49:29Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems.
This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content.
arXiv Detail & Related papers (2022-12-27T16:08:49Z) - Uncovering Fingerprinting Networks. An Analysis of In-Browser Tracking
using a Behavior-based Approach [0.0]
This thesis explores the current state of browser fingerprinting on the internet.
We implement FPNET to identify fingerprinting scripts on large sets of websites by observing their behavior.
We track down companies like Google, Yandex, Maxmind, Sift, or FingerprintJS.
arXiv Detail & Related papers (2022-08-15T18:06:25Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
We explore the feasibility of approximate exposing query identification (EQI) as a retrieval task by reversing the role of queries and documents in two classes of search systems.
We derive an evaluation metric to measure the quality of a ranking of exposing queries, as well as conducting an empirical analysis focusing on various practical aspects of approximate EQI.
arXiv Detail & Related papers (2021-10-14T20:19:27Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z) - On the Social and Technical Challenges of Web Search Autosuggestion
Moderation [118.47867428272878]
Autosuggestions are typically generated by machine learning (ML) systems trained on a corpus of search logs and document representations.
While current search engines have become increasingly proficient at suppressing such problematic suggestions, there are still persistent issues that remain.
We discuss several dimensions of problematic suggestions, difficult issues along the pipeline, and why our discussion applies to the increasing number of applications beyond web search.
arXiv Detail & Related papers (2020-07-09T19:22:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.