Identified-and-Targeted: The First Early Evidence of the Privacy-Invasive Use of Browser Fingerprinting for Online Tracking
- URL: http://arxiv.org/abs/2409.15656v1
- Date: Tue, 24 Sep 2024 01:39:16 GMT
- Title: Identified-and-Targeted: The First Early Evidence of the Privacy-Invasive Use of Browser Fingerprinting for Online Tracking
- Authors: Zengrui Liu, Jimmy Dani, Shujiang Wu, Yinzhi Cao, Nitesh Saxena,
- Abstract summary: It is imperative to address the mounting concerns regarding the utilization of browser fingerprinting in the realm of online advertising.
This paper introduces a new framework FPTrace'' designed to identify alterations in advertisements resulting from adjustments in browser fingerprinting settings.
Using FPTrace we conduct a large-scale measurement study to identify whether browser fingerprinting is being used for the purpose of user tracking and ad targeting.
- Score: 10.98528003128308
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While advertising has become commonplace in today's online interactions, there is a notable dearth of research investigating the extent to which browser fingerprinting is harnessed for user tracking and targeted advertising. Prior studies only measured whether fingerprinting-related scripts are being run on the websites but that in itself does not necessarily mean that fingerprinting is being used for the privacy-invasive purpose of online tracking because fingerprinting might be deployed for the defensive purposes of bot/fraud detection and user authentication. It is imperative to address the mounting concerns regarding the utilization of browser fingerprinting in the realm of online advertising. To understand the privacy-invasive use of fingerprinting for user tracking, this paper introduces a new framework ``FPTrace'' (fingerprinting-based tracking assessment and comprehensive evaluation framework) designed to identify alterations in advertisements resulting from adjustments in browser fingerprinting settings. Our approach involves emulating genuine user interactions, capturing advertiser bid data, and closely monitoring HTTP information. Using FPTrace we conduct a large-scale measurement study to identify whether browser fingerprinting is being used for the purpose of user tracking and ad targeting. The results we have obtained provide robust evidence supporting the utilization of browser fingerprinting for the purposes of advertisement tracking and targeting. This is substantiated by significant disparities in bid values and a reduction in HTTP records subsequent to changes in fingerprinting. In conclusion, our research unveils the widespread employment of browser fingerprinting in online advertising, prompting critical considerations regarding user privacy and data security within the digital advertising landscape.
Related papers
- How Unique is Whose Web Browser? The role of demographics in browser fingerprinting among US users [50.699390248359265]
Browser fingerprinting can be used to identify and track users across the Web, even without cookies.
This technique and resulting privacy risks have been studied for over a decade.
We provide a first-of-its-kind dataset to enable further research.
arXiv Detail & Related papers (2024-10-09T14:51:58Z) - Unveiling the Digital Fingerprints: Analysis of Internet attacks based on website fingerprints [0.0]
We show that using the newest machine learning algorithms an attacker can deanonymize Tor traffic by applying such techniques.
We capture network packets across 11 days, while users navigate specific web pages, recording data in.pcapng format through the Wireshark network capture tool.
arXiv Detail & Related papers (2024-09-01T18:44:40Z) - Assessing Web Fingerprinting Risk [2.144574168644798]
Browser fingerprints are device-specific identifiers that enable covert tracking of users even when cookies are disabled.
Previous research has established entropy, a measure of information, as the key metric for quantifying fingerprinting risk.
We provide the first study of browser fingerprinting which addresses the limitations of prior work.
arXiv Detail & Related papers (2024-03-22T20:34:41Z) - Characterizing Browser Fingerprinting and its Mitigations [0.0]
This work explores one of these tracking techniques: browser fingerprinting.
We detail how browser fingerprinting works, how prevalent it is, and what defenses can mitigate it.
arXiv Detail & Related papers (2023-10-12T20:31:24Z) - Keep your Identity Small: Privacy-preserving Client-side Fingerprinting [0.0]
Device fingerprinting is a widely used technique that allows a third party to identify a particular device.
One of its most widespread uses is to identify users visiting different websites and thus build their browsing history.
This constitutes a specific type of web tracking that poses a threat to users' privacy.
We propose Privacy-preserving Client-side Fingerprinting (PCF), a new method that allows device fingerprinting on the web, while blocks the possibility of performing web tracking.
arXiv Detail & Related papers (2023-09-14T09:45:29Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
We design an intelligent approach to online privacy protection that leverages supervised learning.
By detecting and blocking data collection that might infringe on a user's privacy, we can restore a degree of digital privacy to the user.
arXiv Detail & Related papers (2023-04-06T05:20:16Z) - Hierarchical Perceptual Noise Injection for Social Media Fingerprint
Privacy Protection [106.5308793283895]
fingerprint leakage from social media raises a strong desire for anonymizing shared images.
To guard the fingerprint leakage, adversarial attack emerges as a solution by adding imperceptible perturbations on images.
We propose FingerSafe, a hierarchical perceptual protective noise injection framework to address the mentioned problems.
arXiv Detail & Related papers (2022-08-23T02:20:46Z) - Uncovering Fingerprinting Networks. An Analysis of In-Browser Tracking
using a Behavior-based Approach [0.0]
This thesis explores the current state of browser fingerprinting on the internet.
We implement FPNET to identify fingerprinting scripts on large sets of websites by observing their behavior.
We track down companies like Google, Yandex, Maxmind, Sift, or FingerprintJS.
arXiv Detail & Related papers (2022-08-15T18:06:25Z) - On the vulnerability of fingerprint verification systems to fake
fingerprint attacks [57.36125468024803]
A medium-size fake fingerprint database is described and two different fingerprint verification systems are evaluated on it.
Results for an optical and a thermal sweeping sensors are given.
arXiv Detail & Related papers (2022-07-11T12:22:52Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
Existing approaches for mitigating privacy leakage in action recognition require privacy labels along with the action labels from the video dataset.
Recent developments of self-supervised learning (SSL) have unleashed the untapped potential of the unlabeled data.
We present a novel training framework which removes privacy information from input video in a self-supervised manner without requiring privacy labels.
arXiv Detail & Related papers (2022-03-29T02:56:40Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.