Quantum enhanced non-interferometric quantitative phase imaging
- URL: http://arxiv.org/abs/2304.14727v1
- Date: Fri, 28 Apr 2023 09:55:31 GMT
- Title: Quantum enhanced non-interferometric quantitative phase imaging
- Authors: Giuseppe Ortolano, Alberto Paniate, Pauline Boucher, Carmine Napoli,
Sarika Soman, Silvania F. Pereira, Ivano Ruo Berchera, and Marco Genovese
- Abstract summary: We exploit entanglement to enhance imaging of a pure phase object in a non-interferometric setting.
We demonstrate a clear reduction of the uncertainty in the quantitative phase estimation.
This research also paves the way for applications at different wavelengths, e.g., X-ray imaging.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum entanglement and squeezing have significantly improved phase
estimation and imaging in interferometric settings beyond the classical limits.
However, for a wide class of non-interferometric phase imaging/retrieval
methods vastly used in the classical domain e.g., ptychography and diffractive
imaging, a demonstration of quantum advantage is still missing. Here, we fill
this gap by exploiting entanglement to enhance imaging of a pure phase object
in a non-interferometric setting, only measuring the phase effect on the
free-propagating field. This method, based on the so-called "transport of
intensity equation", is quantitative since it provides the absolute value of
the phase without prior knowledge of the object and operates in wide-field
mode, so it does not need time-consuming raster scanning. Moreover, it does not
require spatial and temporal coherence of the incident light. Besides a general
improvement of the image quality at a fixed number of photons irradiated
through the object, resulting in better discrimination of small details, we
demonstrate a clear reduction of the uncertainty in the quantitative phase
estimation. Although we provide an experimental demonstration of a specific
scheme in the visible spectrum, this research also paves the way for
applications at different wavelengths, e.g., X-ray imaging, where reducing the
photon dose is of utmost importance.
Related papers
- Quantum-like nonlinear interferometry with frequency-engineered classical light [0.0]
We present a "quantum-like" nonlinear optical method that reaches super-resolution in single-photon detection regime.
This is achieved by replacing photon-pairs by coherent states of light, mimicking quantum properties through classical nonlinear optics processes.
arXiv Detail & Related papers (2024-09-18T15:22:25Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Deterministic quantum phase estimation beyond the ideal NOON state limit [0.0]
We develop a new type of phase estimation scheme based on a deterministic source of Gaussian squeezed vacuum states and high-efficiency homodyne detection.
Using a high-efficiency setup with a total loss of about 11% we achieve a Fisher Information of 15.8(6) rad2 per photon unparalleled by any other optical phase estimation technology.
The work represents a fundamental achievement in quantum metrology, and it opens the door to future quantum sensing technologies for the interrogation of light-sensitive biological systems.
arXiv Detail & Related papers (2021-11-18T15:37:13Z) - Phase retrieval enhanced by quantum correlation [0.0]
We propose a technique which exploits entanglement to enhance quantitative phase retrieval of an object in a non-interferometric setting.
This protocol can find application in optical microscopy and X-ray imaging, reducing the photon dose necessary to achieve a fixed signal-to-noise ratio.
arXiv Detail & Related papers (2021-09-21T10:58:48Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Distinguishability and "which pathway" information in multidimensional
interferometric spectroscopy with a single entangled photon-pair [0.0]
Photon exchange-phase and degree of distinguishability have not been widely utilized in quantum-enhanced applications.
We show that even at low degree entanglement, when a two-photon wave-function is coupled to matter, it is encoded with a reliable "which pathway?" information.
We find that quantum-light interferometry facilitates utterly different set of time-delay variables, which are unbound by uncertainty to the inverse bandwidth of the wave-packet.
arXiv Detail & Related papers (2021-07-12T07:19:58Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Experimental certification of nonclassicality via phase-space
inequalities [58.720142291102135]
We present the first experimental implementation of the recently introduced phase-space inequalities for nonclassicality certification.
We demonstrate the practicality and sensitivity of this approach by studying nonclassicality of a family of noisy and lossy quantum states of light.
arXiv Detail & Related papers (2020-10-01T09:03:52Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z) - Conditional Spectroscopy via Non-Stationary Optical Homodyne Quantum
State Tomography [0.0]
We introduce non-stationary quantum state tomography, which adapts the technique to the special requirements of ultrafast spectroscopy.
In detail, we gain access to the amplitude and phase of light fields with a temporal resolution of about 100,fs without the need for a fixed phase reference.
arXiv Detail & Related papers (2020-02-04T18:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.