論文の概要: Prevalence of Neural Collapse during the terminal phase of deep learning
training
- arxiv url: http://arxiv.org/abs/2008.08186v2
- Date: Fri, 21 Aug 2020 16:15:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 20:36:55.764035
- Title: Prevalence of Neural Collapse during the terminal phase of deep learning
training
- Title(参考訳): 深層学習の終末期における神経崩壊の頻度
- Authors: Vardan Papyan, X.Y. Han, David L. Donoho
- Abstract要約: 終末訓練(TPT)によるDeepnets分類訓練の現代的実践
TPT中、トレーニングエラーは事実上ゼロであり、トレーニング損失はゼロにプッシュされる。
TPTによって誘導される対称的かつ非常に単純な幾何学は、より良い性能、より良い一般化、より良い解釈可能性を含む重要な利益をもたらす。
- 参考スコア(独自算出の注目度): 7.031848258307718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern practice for training classification deepnets involves a Terminal
Phase of Training (TPT), which begins at the epoch where training error first
vanishes; During TPT, the training error stays effectively zero while training
loss is pushed towards zero. Direct measurements of TPT, for three prototypical
deepnet architectures and across seven canonical classification datasets,
expose a pervasive inductive bias we call Neural Collapse, involving four
deeply interconnected phenomena: (NC1) Cross-example within-class variability
of last-layer training activations collapses to zero, as the individual
activations themselves collapse to their class-means; (NC2) The class-means
collapse to the vertices of a Simplex Equiangular Tight Frame (ETF); (NC3) Up
to rescaling, the last-layer classifiers collapse to the class-means, or in
other words to the Simplex ETF, i.e. to a self-dual configuration; (NC4) For a
given activation, the classifier's decision collapses to simply choosing
whichever class has the closest train class-mean, i.e. the Nearest Class Center
(NCC) decision rule. The symmetric and very simple geometry induced by the TPT
confers important benefits, including better generalization performance, better
robustness, and better interpretability.
- Abstract(参考訳): ディープネットを訓練する現代の実践は、訓練エラーが最初に消滅した時代から始まる訓練の終末期(tpt)であり、tptの間、トレーニング損失がゼロに押される間、トレーニングエラーは効果的にゼロにとどまる。
Direct measurements of TPT, for three prototypical deepnet architectures and across seven canonical classification datasets, expose a pervasive inductive bias we call Neural Collapse, involving four deeply interconnected phenomena: (NC1) Cross-example within-class variability of last-layer training activations collapses to zero, as the individual activations themselves collapse to their class-means; (NC2) The class-means collapse to the vertices of a Simplex Equiangular Tight Frame (ETF); (NC3) Up to rescaling, the last-layer classifiers collapse to the class-means, or in other words to the Simplex ETF, i.e. to a self-dual configuration; (NC4) For a given activation, the classifier's decision collapses to simply choosing whichever class has the closest train class-mean, i.e. the Nearest Class Center (NCC) decision rule.
TPTによって誘導される対称的かつ非常に単純な幾何学は、より優れた一般化性能、より良い堅牢性、より良い解釈可能性を含む重要な利益をもたらす。
関連論文リスト
- Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
半教師付き学習(SSL)は大規模3Dシーン理解のための活発な研究課題である。
既存のSSLベースのメソッドは、クラス不均衡とポイントクラウドデータのロングテール分布による厳しいトレーニングバイアスに悩まされている。
本稿では,特徴表現学習と分類器を別の最適化方法で切り離してバイアス決定境界を効果的にシフトする,新しいデカップリング最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:16:40Z) - Neural Collapse for Cross-entropy Class-Imbalanced Learning with Unconstrained ReLU Feature Model [25.61363481391964]
トレーニングデータセットがクラス不均衡である場合、いくつかのNeural Collapse(NC)プロパティはもはや真実ではない。
本稿では,制約のないReLU特徴量モデルの下で,NCを不均衡状態に一般化し,クロスエントロピー損失の低減を図る。
重みは,各クラスのトレーニングサンプル数によって異なるが,重みはスケールおよび集中型クラス平均値に一致していることがわかった。
論文 参考訳(メタデータ) (2024-01-04T04:53:31Z) - Inducing Neural Collapse to a Fixed Hierarchy-Aware Frame for Reducing
Mistake Severity [0.0]
深層ニューラルネットワークの線形分類器を階層認識フレーム(HAFrame)に固定することを提案する。
提案手法は,複数のデータセット上でトップ1の精度を維持しながら,モデルの予測ミスの深刻度を低減する。
論文 参考訳(メタデータ) (2023-03-10T03:44:01Z) - Neural Collapse Inspired Feature-Classifier Alignment for Few-Shot Class
Incremental Learning [120.53458753007851]
FSCIL(Few-shot class-incremental Learning)は、新しいセッションにおいて、新しいクラスごとにいくつかのトレーニングサンプルしかアクセスできないため、難しい問題である。
我々は最近発見された神経崩壊現象にインスパイアされたFSCILのこの不整合ジレンマに対処する。
我々は、FSCILのための神経崩壊誘発フレームワークを提案する。MiniImageNet、CUB-200、CIFAR-100データセットの実験により、提案したフレームワークが最先端のパフォーマンスより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-06T18:39:40Z) - Understanding Imbalanced Semantic Segmentation Through Neural Collapse [81.89121711426951]
セマンティックセグメンテーションは自然に文脈的相関とクラス間の不均衡分布をもたらすことを示す。
機能中心にレギュレータを導入し、ネットワークが魅力ある構造に近い機能を学ぶことを奨励する。
我々の手法は、ScanNet200テストリーダーボードで1位にランクインし、新しい記録を樹立する。
論文 参考訳(メタデータ) (2023-01-03T13:51:51Z) - Killing Two Birds with One Stone:Efficient and Robust Training of Face
Recognition CNNs by Partial FC [66.71660672526349]
部分FC (Partial FC) という,完全連結層 (FC) のスパース更新版を提案する。
各イテレーションにおいて、マージンベースのソフトマックス損失を計算するために、正のクラスセンターと負のクラスセンターのランダムなサブセットが選択される。
計算要求、クラス間衝突の確率、テールクラスセンターにおけるパッシブ更新の頻度は劇的に減少する。
論文 参考訳(メタデータ) (2022-03-28T14:33:21Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
本研究では、ニューラルネットワークを学習して分類器をランダムにETFとして分類し、訓練中に固定する可能性について検討する。
実験結果から,バランスの取れたデータセットの画像分類において,同様の性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-17T04:34:28Z) - Neural Collapse Under MSE Loss: Proximity to and Dynamics on the Central
Path [11.181590224799224]
最近の研究は、今日のディープネットトレーニングパラダイムで広範に発生するNeural Collapse(NC)と呼ばれる現象を発見した。
本研究では、3つの原型ネットワークと5つの標準データセットの実験的観測を報告し、MSE-NCの実証的現実を確立した。
我々は、制約のない特徴モデルにおいて、完全なニューラル崩壊を予測するクローズドフォームダイナミクスを生成する。
論文 参考訳(メタデータ) (2021-06-03T18:31:41Z) - Feature Purification: How Adversarial Training Performs Robust Deep
Learning [66.05472746340142]
ニューラルネットワークのトレーニングプロセス中に隠れた重みに、特定の小さな密度の混合物が蓄積されることが、敵の例の存在の原因の1つであることを示す。
この原理を説明するために、CIFAR-10データセットの両実験と、ある自然な分類タスクに対して、ランダムな勾配勾配勾配を用いた2層ニューラルネットワークをトレーニングすることを証明する理論的結果を示す。
論文 参考訳(メタデータ) (2020-05-20T16:56:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。