論文の概要: LIRA: Lifelong Image Restoration from Unknown Blended Distortions
- arxiv url: http://arxiv.org/abs/2008.08242v1
- Date: Wed, 19 Aug 2020 03:35:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 12:27:28.470419
- Title: LIRA: Lifelong Image Restoration from Unknown Blended Distortions
- Title(参考訳): lira: 未知の混合歪みによる生涯画像復元
- Authors: Jianzhao Liu, Jianxin Lin, Xin Li, Wei Zhou, Sen Liu, Zhibo Chen
- Abstract要約: そこで本研究では,ブレンド歪みに対する生涯画像復元問題を提案する。
まず,個別歪み除去タスクを専門とする複数の事前訓練されたエキスパートモデルを協調的に動作させるベースフォークジョイントモデルを設計する。
我々は、以前トレーニングされたモデルが新しいエキスパートブランチを組み込んで、新しい知識を継続的に蓄積する神経成長戦略を開発する。
- 参考スコア(独自算出の注目度): 33.91806781681914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most existing image restoration networks are designed in a disposable way and
catastrophically forget previously learned distortions when trained on a new
distortion removal task. To alleviate this problem, we raise the novel lifelong
image restoration problem for blended distortions. We first design a base
fork-join model in which multiple pre-trained expert models specializing in
individual distortion removal task work cooperatively and adaptively to handle
blended distortions. When the input is degraded by a new distortion, inspired
by adult neurogenesis in human memory system, we develop a neural growing
strategy where the previously trained model can incorporate a new expert branch
and continually accumulate new knowledge without interfering with learned
knowledge. Experimental results show that the proposed approach can not only
achieve state-of-the-art performance on blended distortions removal tasks in
both PSNR/SSIM metrics, but also maintain old expertise while learning new
restoration tasks.
- Abstract(参考訳): 既存の画像復元ネットワークの多くは使い捨ての方法で設計されており、新しい歪み除去タスクでトレーニングされたときの学習した歪みを破滅的に忘れている。
この問題を軽減するために,ブレンド歪みに対する長寿命画像復元問題を提起する。
まず,個々の歪み除去タスクを専門とする複数の事前訓練されたエキスパートモデルが協調的かつ適応的に混合歪みを処理するベースフォークジョインモデルの設計を行った。
人間の記憶系における成人神経新生にインスパイアされた新たな歪みによって入力が劣化すると、トレーニング済みのモデルが新たなエキスパートブランチを組み込んで、学習知識に干渉することなく新たな知識を継続的に蓄積する神経成長戦略を開発する。
実験の結果,提案手法はpsnr/ssimメトリクスの混合歪み除去タスクにおいて最先端の性能を達成できるだけでなく,新しい復元タスクを学習しながら古い専門知識を維持できることがわかった。
関連論文リスト
- Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
本稿では,近年の拡散モデルに基づく画像復元手法について概観する。
我々は、赤外線とブラインド/現実世界の両方で拡散モデルを用いて、革新的なデザインを分類し、強調する。
本稿では,拡散モデルに基づくIRの今後の研究に向けた5つの可能性と課題を提案する。
論文 参考訳(メタデータ) (2023-08-18T08:40:38Z) - All-in-one Multi-degradation Image Restoration Network via Hierarchical
Degradation Representation [47.00239809958627]
我々は新しいオールインワン・マルチデグレーション画像復元ネットワーク(AMIRNet)を提案する。
AMIRNetは、クラスタリングによって木構造を段階的に構築することで、未知の劣化画像の劣化表現を学習する。
この木構造表現は、様々な歪みの一貫性と不一致を明示的に反映しており、画像復元の具体的な手がかりとなっている。
論文 参考訳(メタデータ) (2023-08-06T04:51:41Z) - Reconstruction Distortion of Learned Image Compression with
Imperceptible Perturbations [69.25683256447044]
本稿では,学習画像圧縮(lic)の再構成品質を効果的に劣化させる攻撃手法を提案する。
我々は,Frobeniusノルムに基づく損失関数を導入して,元の画像と再構成された逆例との差を最大化することによって,逆例を生成する。
様々なlicモデルを用いてKodakデータセット上で実験を行った結果,有効性が確認された。
論文 参考訳(メタデータ) (2023-06-01T20:21:05Z) - Invertible Network for Unpaired Low-light Image Enhancement [78.33382003460903]
本稿では,非可逆的ネットワークを活用して,前処理における低照度画像の強化と,非対向学習により逆向きに通常の照度画像の劣化を図ることを提案する。
対向的損失に加えて、トレーニングの安定性を確保し、より詳細な画像を保存するために、様々な損失関数を設計する。
低照度画像に対するプログレッシブ自己誘導強調処理を提案し,SOTAに対して良好な性能を示す。
論文 参考訳(メタデータ) (2021-12-24T17:00:54Z) - Implicit Subspace Prior Learning for Dual-Blind Face Restoration [66.67059961379923]
新しい暗黙的サブスペース事前学習(ISPL)フレームワークが、二重盲顔復元の一般的な解決策として提案されている。
実験の結果,既存の最先端手法に対するISPLの認識歪改善が顕著であった。
論文 参考訳(メタデータ) (2020-10-12T08:04:24Z) - Restoring Spatially-Heterogeneous Distortions using Mixture of Experts
Network [11.048041466120589]
空間的不均一な歪みデータセットを導入し、各画像の異なる場所に複数の汚職を適用した。
マルチタスク学習によってモチベーションを得たネットワークは,共通表現と歪み表現の両方を学習する複数の経路を持つように設計されている。
我々のモデルは実世界の歪みの復元に有効であり、本手法が単一歪みと多重歪みの両方を管理するように設計された他のモデルよりも優れていることを実験的に検証した。
論文 参考訳(メタデータ) (2020-09-30T11:06:38Z) - Self-Organized Operational Neural Networks for Severe Image Restoration
Problems [25.838282412957675]
畳み込みニューラルネットワーク(CNN)に基づく離散学習は、ノイズとクリーンのイメージペアのトレーニング例から学習することで、画像復元を行うことを目的としている。
これは畳み込みに基づく変換の本質的な線形性によるものであり、深刻な復元問題に対処するには不十分である。
画像復元のための自己組織型ONN(Self-ONN)を提案する。
論文 参考訳(メタデータ) (2020-08-29T02:19:41Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
強い散乱準透明物体の有限角トモグラフィーは困難で、非常に不適切な問題である。
このような問題の状況を改善することにより、アーティファクトの削減には、事前の定期化が必要である。
我々は,新しい分割畳み込みゲート再帰ユニット(SC-GRU)をビルディングブロックとして,リカレントニューラルネットワーク(RNN)アーキテクチャを考案した。
論文 参考訳(メタデータ) (2020-07-21T11:48:22Z) - Supervised Learning of Sparsity-Promoting Regularizers for Denoising [13.203765985718205]
本稿では,画像復調のための疎度促進型正規化器の教師あり学習法を提案する。
実験の結果,提案手法はよく知られた正規化器よりも優れた演算子を学習できることがわかった。
論文 参考訳(メタデータ) (2020-06-09T21:38:05Z) - Blind Image Restoration without Prior Knowledge [0.22940141855172028]
本稿では, 自己Normalization Side-Chain (SCNC) について述べる。
SCNCは既存のCNNトポロジに追加することができ、ネットワークの他の部分とエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2020-03-03T19:57:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。