論文の概要: Reconstruction Distortion of Learned Image Compression with
Imperceptible Perturbations
- arxiv url: http://arxiv.org/abs/2306.01125v1
- Date: Thu, 1 Jun 2023 20:21:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-05 17:50:51.298311
- Title: Reconstruction Distortion of Learned Image Compression with
Imperceptible Perturbations
- Title(参考訳): 知覚不能摂動による学習画像圧縮の再構成歪み
- Authors: Yang Sui, Zhuohang Li, Ding Ding, Xiang Pan, Xiaozhong Xu, Shan Liu,
Zhenzhong Chen
- Abstract要約: 本稿では,学習画像圧縮(lic)の再構成品質を効果的に劣化させる攻撃手法を提案する。
我々は,Frobeniusノルムに基づく損失関数を導入して,元の画像と再構成された逆例との差を最大化することによって,逆例を生成する。
様々なlicモデルを用いてKodakデータセット上で実験を行った結果,有効性が確認された。
- 参考スコア(独自算出の注目度): 69.25683256447044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learned Image Compression (LIC) has recently become the trending technique
for image transmission due to its notable performance. Despite its popularity,
the robustness of LIC with respect to the quality of image reconstruction
remains under-explored. In this paper, we introduce an imperceptible attack
approach designed to effectively degrade the reconstruction quality of LIC,
resulting in the reconstructed image being severely disrupted by noise where
any object in the reconstructed images is virtually impossible. More
specifically, we generate adversarial examples by introducing a Frobenius
norm-based loss function to maximize the discrepancy between original images
and reconstructed adversarial examples. Further, leveraging the insensitivity
of high-frequency components to human vision, we introduce Imperceptibility
Constraint (IC) to ensure that the perturbations remain inconspicuous.
Experiments conducted on the Kodak dataset using various LIC models demonstrate
effectiveness. In addition, we provide several findings and suggestions for
designing future defenses.
- Abstract(参考訳): Learned Image Compression (LIC)は近年,その顕著な性能から画像伝送のトレンド技術となっている。
その人気にもかかわらず、画像再構成の質に関するlicの堅牢性は未検討のままである。
本稿では,リコンの復元品質を効果的に低下させるため,再構成画像の任意のオブジェクトが事実上不可能なノイズにより,再構成画像が著しく破壊されるようにする。
具体的には、Frobeniusノルムに基づく損失関数を導入し、元の画像と再構成された逆例との差を最大化する。
さらに,人間の視覚に高周波成分の不感性を活用することで,摂動が目立たないことを保証するために,不感性制約(ic)を導入する。
様々なlicモデルを用いてkodakデータセット上で行った実験が有効性を示している。
さらに,今後の防御設計について,いくつかの知見と提案を行う。
関連論文リスト
- Edge-based Denoising Image Compression [10.477417679208845]
深層学習に基づく画像圧縮は、研究の重要な領域として現れている。
本稿では,拡散モデルを用いた新しい圧縮モデルを提案する。
我々のモデルは画像の品質と圧縮効率の点で、優れた結果または同等の結果が得られる。
論文 参考訳(メタデータ) (2024-09-17T08:20:26Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
敵対的攻撃は容易に画像分類システムを破壊し、DNNベースの認識タスクの脆弱性を明らかにする。
我々は、学習した画像圧縮機を前処理モジュールとして利用する画像分類モデルをターゲットにした新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-06T03:03:28Z) - Latent Diffusion Prior Enhanced Deep Unfolding for Snapshot Spectral Compressive Imaging [17.511583657111792]
スナップショット分光画像再構成は、単発2次元圧縮計測から3次元空間スペクトル像を再構成することを目的としている。
我々は, 深部展開法に先立って劣化のないモデルを生成するため, 遅延拡散モデル(LDM)という生成モデルを導入する。
論文 参考訳(メタデータ) (2023-11-24T04:55:20Z) - Image Reconstruction using Enhanced Vision Transformer [0.08594140167290097]
画像のデノイング,デブロアリング,インペイントといったタスクに使用できる新しい画像再構成フレームワークを提案する。
このプロジェクトで提案されるモデルは、2次元画像を入力として取り込んで埋め込みを出力するビジョントランスフォーマー(ViT)に基づいている。
モデル再構築機能を改善するために,フレームワークに4つの最適化手法を組み込んだ。
論文 参考訳(メタデータ) (2023-07-11T02:14:18Z) - DiracDiffusion: Denoising and Incremental Reconstruction with Assured Data-Consistency [24.5360032541275]
拡散モデルは、画像復元を含む多数のコンピュータビジョンタスクにおいて、この技術の新たな状態を確立した。
逆問題解決のための新しい枠組みを提案する。つまり、観測は徐々に劣化し、元のクリーンイメージにノイズを与える劣化過程から来ていると仮定する。
本手法は, 逆過程を通じて元の計測値との整合性を維持し, 歪み指標の改善と早期ストッピングによるサンプリング高速化のために, 知覚品質のトレードオフに優れた柔軟性を実現する。
論文 参考訳(メタデータ) (2023-03-25T04:37:20Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
ブラインド顔復元は通常、トレーニングのための事前定義された劣化モデルで劣化した低品質データを合成する。
トレーニングデータに現実のケースをカバーするために、あらゆる種類の劣化を含めることは、高価で実現不可能である。
本稿では、まず、劣化した画像を粗いが劣化不変な予測に変換し、次に、粗い予測を高品質な画像に復元するために拡張モジュールを使用するロバスト劣化再帰法(DR2)を提案する。
論文 参考訳(メタデータ) (2023-03-13T06:05:18Z) - Improving Multi-generation Robustness of Learned Image Compression [16.86614420872084]
ネットワーク構造を変更せずに50回再符号化しても,BPGの最初の圧縮に匹敵する性能が得られることを示す。
論文 参考訳(メタデータ) (2022-10-31T03:26:11Z) - Invertible Rescaling Network and Its Extensions [118.72015270085535]
本研究では,新たな視点から双方向の劣化と復元をモデル化する,新しい可逆的枠組みを提案する。
我々は、有効な劣化画像を生成し、失われたコンテンツの分布を変換する可逆モデルを開発する。
そして、ランダムに描画された潜在変数とともに、生成された劣化画像に逆変換を適用することにより、復元可能とする。
論文 参考訳(メタデータ) (2022-10-09T06:58:58Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。