論文の概要: Using Sampling Strategy to Assist Consensus Sequence Analysis
- arxiv url: http://arxiv.org/abs/2008.08300v2
- Date: Thu, 1 Jul 2021 23:03:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 12:17:43.905261
- Title: Using Sampling Strategy to Assist Consensus Sequence Analysis
- Title(参考訳): サンプリング戦略を用いたコンセンサスシーケンス解析の支援
- Authors: Zhichao Xu, Shuhong Chen
- Abstract要約: 本稿では,代表的コンセンサスシーケンスを生成するために必要なトレース数を決定するための新しいサンプリング手法を提案する。
事前に定義されたエキスパートモデルと実際のプロセスとの差を推定する方法を示す。
- 参考スコア(独自算出の注目度): 3.983901161231557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consensus Sequences of event logs are often used in process mining to quickly
grasp the core sequence of events to be performed in a process, or to represent
the backbone of the process for doing other analyses. However, it is still not
clear how many traces are enough to properly represent the underlying process.
In this paper, we propose a novel sampling strategy to determine the number of
traces necessary to produce a representative consensus sequence. We show how to
estimate the difference between the predefined Expert Model and the real
processes carried out. This difference level can be used as reference for
domain experts to adjust the Expert Model. In addition, we apply this strategy
to several real-world workflow activity datasets as a case study. We show a
sample curve fitting task to help readers better understand our proposed
methodology.
- Abstract(参考訳): イベントログのコンセンサスシーケンスは、プロセスマイニングにおいて、プロセスで実行されるイベントのコアシーケンスを素早く把握したり、他の分析を行うプロセスのバックボーンを表すためにしばしば使用される。
しかし、基礎となるプロセスを適切に表現するのに十分なトレース数はまだ明らかではない。
本稿では,代表的コンセンサスシーケンスを生成するために必要なトレース数を決定するための新しいサンプリング手法を提案する。
事前に定義されたエキスパートモデルと実際のプロセスとの差を推定する方法を示す。
この差レベルは、専門家モデルを調整するためのドメインエキスパートの参照として使用できます。
さらに、この戦略をいくつかの実世界のワークフローアクティビティデータセットにケーススタディとして適用する。
本稿では,提案手法の理解を深めるために,サンプル曲線適合タスクを示す。
関連論文リスト
- Scalable Signature-Based Distribution Regression via Reference Sets [1.8980236415886387]
パスシグネチャは、シグネチャベースの機能を通じてパスに符号化された情報を活用するために使用される。
アートDRソリューションの現在の状態は、メモリ集約的で、高コストである。
この計算ボトルネックは、アプリケーションを小さなサンプルサイズに制限する。
本稿では,上記の問題に対処する手法を提案する。
また,多様な学習タスクにDRを使用できるパイプラインを提案する。
論文 参考訳(メタデータ) (2024-10-11T18:58:28Z) - Mining a Minimal Set of Behavioral Patterns using Incremental Evaluation [3.16536213610547]
行動パターンマイニングへの既存のアプローチには2つの制限がある。
まず、インクリメンタルな計算がパターン候補の生成にのみ組み込まれるため、スケーラビリティが制限される。
第二に、マイニングされたパターンに基づくプロセス分析は、実用的なアプリケーションシナリオで得られるパターンが圧倒的に多いため、限られた効果しか示さない。
論文 参考訳(メタデータ) (2024-02-05T11:41:37Z) - Sample and Predict Your Latent: Modality-free Sequential Disentanglement
via Contrastive Estimation [2.7759072740347017]
外部信号のないコントラスト推定に基づく自己教師付きシーケンシャル・アンタングルメント・フレームワークを提案する。
実際に,データのセマンティックに類似し,異種なビューに対して,統一的で効率的かつ容易にサンプリングできる手法を提案する。
提案手法は,既存の手法と比較して最先端の結果を示す。
論文 参考訳(メタデータ) (2023-05-25T10:50:30Z) - Trace Encoding in Process Mining: a survey and benchmarking [0.34410212782758054]
メソッドは、予測プロセス監視、異常なケース検出、クラスタリングトレースなど、いくつかのプロセスマイニングタスクで使用される。
ほとんどの論文では、既存の符号化手法を任意に選択するか、特定の専門家知識ドメインに基づいた戦略を採用する。
この研究は、27のメソッドを比較することで、イベントログエンコーディングに関する包括的な調査を提供することを目的としている。
論文 参考訳(メタデータ) (2023-01-05T17:25:30Z) - FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality
Assessment [93.09267863425492]
競争力のあるスポーツビデオにおける行動の高レベル意味論と内部時間構造の両方を理解することが、予測を正確かつ解釈可能なものにする鍵である、と我々は主張する。
本研究では,多様なダイビングイベントに対して,アクションプロシージャに関する詳細なアノテーションを付加した,ファインディビングと呼ばれる詳細なデータセットを構築した。
論文 参考訳(メタデータ) (2022-04-07T17:59:32Z) - Beyond Farthest Point Sampling in Point-Wise Analysis [52.218037492342546]
本稿では,ポイントワイズ分析タスクのための新しいデータ駆動型サンプル学習手法を提案する。
我々はサンプルと下流のアプリケーションを共同で学習する。
実験により, 従来のベースライン法に比べて, サンプルとタスクの同時学習が顕著に改善することが示された。
論文 参考訳(メタデータ) (2021-07-09T08:08:44Z) - Conditional Meta-Learning of Linear Representations [57.90025697492041]
表現学習のための標準メタラーニングは、複数のタスク間で共有される共通の表現を見つけることを目的とする。
本研究では,タスクの側情報を手作業に適した表現にマッピングし,条件付け関数を推定することで,この問題を克服する。
この利点を実用的に活用できるメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-30T12:02:14Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
コントラスト学習(Contrastive Learning)は、ラベルのないデータから構築された分類タスクを解決するためにモデルを訓練する自己指導型の手法のファミリーである。
拡散の場合,小~中距離間隔の遷移カーネルを適切に構築したコントラスト学習タスクを用いて推定できることが示される。
論文 参考訳(メタデータ) (2021-03-03T23:06:47Z) - Subtask Analysis of Process Data Through a Predictive Model [5.7668512557707166]
本稿では,そのようなプロセスデータの探索的解析のための計算効率の良い手法を開発した。
新しいアプローチでは、長い個々のプロセスを短いサブプロセスのシーケンスに分割することで、複雑性の低減を実現している。
PIAAC 2012のプロセスデータを用いて、新しいアプローチでプロセスデータの探索分析がどのように行えるかを示す。
論文 参考訳(メタデータ) (2020-08-29T21:11:01Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
我々は,同じ形状の複数のパラメトリックモデルを雑音測定に適合させる頑健な推定器を提案する。
複数のモデル検出のための手作り検索戦略を利用する従来の研究とは対照的に,データから検索戦略を学習する。
探索の自己教師付き学習において,提案したアルゴリズムをマルチホログラフィー推定で評価し,最先端手法よりも優れた精度を示す。
論文 参考訳(メタデータ) (2020-01-08T17:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。