論文の概要: Learning Attribute-Based and Relationship-Based Access Control Policies
with Unknown Values
- arxiv url: http://arxiv.org/abs/2008.08444v4
- Date: Mon, 23 Nov 2020 18:45:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 12:17:31.665845
- Title: Learning Attribute-Based and Relationship-Based Access Control Policies
with Unknown Values
- Title(参考訳): 未知値を持つ属性ベースおよび関係ベースアクセス制御ポリシーの学習
- Authors: Thang Bui and Scott D. Stoller
- Abstract要約: 本稿では、アクセス制御リスト(ACL)とエンティティに関する不完全な情報からABACおよびReBACポリシーをマイニングするための最初のアルゴリズムを提案する。
この問題のコアは、未知を含むラベル付き特徴ベクトルの集合から、簡潔な3値論理式を学習したものと見なせる。
- 参考スコア(独自算出の注目度): 0.6662800021628273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attribute-Based Access Control (ABAC) and Relationship-based access control
(ReBAC) provide a high level of expressiveness and flexibility that promote
security and information sharing, by allowing policies to be expressed in terms
of attributes of and chains of relationships between entities. Algorithms for
learning ABAC and ReBAC policies from legacy access control information have
the potential to significantly reduce the cost of migration to ABAC or ReBAC.
This paper presents the first algorithms for mining ABAC and ReBAC policies
from access control lists (ACLs) and incomplete information about entities,
where the values of some attributes of some entities are unknown. We show that
the core of this problem can be viewed as learning a concise three-valued logic
formula from a set of labeled feature vectors containing unknowns, and we give
the first algorithm (to the best of our knowledge) for that problem.
- Abstract(参考訳): 属性ベースアクセス制御(ABAC)とリレーションベースアクセス制御(ReBAC)は、エンティティ間の関係の属性と連鎖の観点でポリシーを表現できるようにすることで、セキュリティと情報共有を促進する高いレベルの表現性と柔軟性を提供する。
レガシーアクセス制御情報からABACおよびReBACポリシーを学習するアルゴリズムは、ABACまたはReBACへの移行コストを大幅に削減する可能性がある。
本稿では、アクセス制御リスト(ACL)からABACおよびReBACポリシーをマイニングするための最初のアルゴリズムと、いくつかの属性の値が不明なエンティティに関する不完全な情報を示す。
この問題の核心は、未知数を含むラベル付き特徴ベクトルの集合から簡潔な3値論理式を学習していると見なすことができ、その問題に対して最初のアルゴリズム(我々の知る限り)を与えることができる。
関連論文リスト
- IBAC Mathematics and Mechanics: The Case for 'Integer Based Access Control' of Data Security in the Age of AI and AI Automation [0.0]
データアクセス制御の現在の方法、特にAIとAIの自動化は、適切なデータアクセスを保証するというユニークな課題に直面している。
RBAC(Role-Based Access Control)とABAC(Atribute-Based Access Control)の限界に対処する集約型アクセス制御(ABAC)を導入する。
IBACの数学的基盤は、リレーショナルおよび文書認証への適用を可能にする。
論文 参考訳(メタデータ) (2024-10-24T06:19:57Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - Comparison of Access Control Approaches for Graph-Structured Data [0.0]
グラフ構造化データは、その複雑な構造のために高度な、柔軟な、きめ細かいアクセス制御を必要とする。
いくつかの研究は、プロパティグラフ構造データ保護、きめ細かいアクセス制御、そしてそれらの概念の実現可能性と適用性を証明することに焦点を当てている。
我々は,近年のデータベースモデルに加えて,さまざまなデータベースモデルの認証とアクセス制御に関する体系的な文献レビューから,論文を選択する。
論文 参考訳(メタデータ) (2024-05-31T12:31:05Z) - ConstraintChecker: A Plugin for Large Language Models to Reason on
Commonsense Knowledge Bases [53.29427395419317]
コモンセンス知識ベース(CSKB)に対する推論は,新しいコモンセンス知識を取得する方法として検討されてきた。
我々は**ConstraintChecker*を提案します。
論文 参考訳(メタデータ) (2024-01-25T08:03:38Z) - A Simple Baseline for Knowledge-Based Visual Question Answering [78.00758742784532]
本稿では,知識に基づく視覚質問応答(KB-VQA)の問題について述べる。
本論文の主な貢献は,よりシンプルで容易に再現可能なパイプラインを提案することである。
近年のアプローチとは対照的に,本手法はトレーニングフリーであり,外部データベースやAPIへのアクセスを必要とせず,OK-VQAおよびA-OK-VQAデータセット上で最先端の精度を実現する。
論文 参考訳(メタデータ) (2023-10-20T15:08:17Z) - Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A
Reinforcement Learning Based Approach [61.74489383629319]
新たなOpen Radio Access Network(O-RAN)におけるデバイスの大量ランダムアクセスは、アクセス制御と管理に大きな課題をもたらします。
閉ループアクセス制御の強化学習(RL)支援方式を提案する。
深部RL支援SAUDは、連続的かつ高次元の状態と行動空間を持つ複雑な環境を解決するために提案されている。
論文 参考訳(メタデータ) (2023-03-05T12:25:49Z) - Retrieval Enhanced Data Augmentation for Question Answering on Privacy
Policies [74.01792675564218]
本研究では,ラベルのないポリシー文書から関連するテキストセグメントを抽出する検索モデルに基づくデータ拡張フレームワークを開発する。
拡張データの多様性と品質を改善するために,複数の事前学習言語モデル(LM)を活用し,ノイズ低減フィルタモデルでそれらをカスケードする。
PrivacyQAベンチマークの強化データを使用して、既存のベースラインを大きなマージン(10% F1)に高め、新しい最先端のF1スコアを50%達成します。
論文 参考訳(メタデータ) (2022-04-19T15:45:23Z) - Toward Deep Learning Based Access Control [3.2511618464944547]
本稿では,ディープラーニング技術の大幅な進歩を活用して,DLBAC(Deep Learning Based Access Control)を提案する。
DLBACは補完し、長期的には、従来のアクセス制御モデルをニューラルネットワークで置き換える可能性さえある。
提案手法は,精度,一般化,説明可能性に関する問題に対処することで実現可能であることを示す。
論文 参考訳(メタデータ) (2022-03-28T22:05:11Z) - Boosting Weakly Supervised Object Detection via Learning Bounding Box
Adjusters [76.36104006511684]
高価なインスタンスレベルのオブジェクトアノテーションを避けるため、WSOD(Weakly-supervised Object Detection)が最近の話題として登場した。
我々は、よく注釈付けされた補助データセットからバウンディングボックス回帰知識を活用することにより、ローカライズ性能を向上させるための問題設定を擁護する。
提案手法は,WSOD法と知識伝達モデルに対して,同様の問題設定で良好に機能する。
論文 参考訳(メタデータ) (2021-08-03T13:38:20Z) - Adaptive ABAC Policy Learning: A Reinforcement Learning Approach [2.5997274006052544]
承認管理作業を自動化するための適応型ABACポリシー学習手法を提案する。
特に,承認エンジンがフィードバック制御ループを介してABACモデルを適応するコンテキスト的盗聴システムを提案する。
実例として,ホームIoT環境のための適応型ABACポリシー学習モデルの開発に重点を置いている。
論文 参考訳(メタデータ) (2021-05-18T15:18:02Z) - An Automatic Attribute Based Access Control Policy Extraction from
Access Logs [5.142415132534397]
属性ベースのアクセス制御(ABAC)モデルは、複雑なシステムや動的システムの認証要求に対処するための、より柔軟なアプローチを提供する。
本稿では,システムへのアクセスログからABACポリシールールを自動的に学習し,ポリシー開発プロセスを簡素化する手法を提案する。
論文 参考訳(メタデータ) (2020-03-16T15:08:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。