論文の概要: Comparison of Access Control Approaches for Graph-Structured Data
- arxiv url: http://arxiv.org/abs/2405.20762v1
- Date: Fri, 31 May 2024 12:31:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 14:47:24.321771
- Title: Comparison of Access Control Approaches for Graph-Structured Data
- Title(参考訳): グラフ構造化データのアクセス制御手法の比較
- Authors: Aya Mohamed, Dagmar Auer, Daniel Hofer, Josef Kueng,
- Abstract要約: グラフ構造化データは、その複雑な構造のために高度な、柔軟な、きめ細かいアクセス制御を必要とする。
いくつかの研究は、プロパティグラフ構造データ保護、きめ細かいアクセス制御、そしてそれらの概念の実現可能性と適用性を証明することに焦点を当てている。
我々は,近年のデータベースモデルに加えて,さまざまなデータベースモデルの認証とアクセス制御に関する体系的な文献レビューから,論文を選択する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Access control is the enforcement of the authorization policy, which defines subjects, resources, and access rights. Graph-structured data requires advanced, flexible, and fine-grained access control due to its complex structure as sequences of alternating vertices and edges. Several research works focus on protecting property graph-structured data, enforcing fine-grained access control, and proving the feasibility and applicability of their concept. However, they differ conceptually and technically. We select works from our systematic literature review on authorization and access control for different database models in addition to recent ones. Based on defined criteria, we exclude research works with different objectives, such as no protection of graph-structured data, graph models other than the property graph, coarse-grained access control approaches, or no application in a graph datastore (i.e., no proof-of-concept implementation). The latest version of the remaining works are discussed in detail in terms of their access control approach as well as authorization policy definition and enforcement. Finally, we analyze the strengths and limitations of the selected works and provide a comparison with respect to different aspects, including the base access control model, open/closed policy, negative permission support, and datastore-independent enforcement.
- Abstract(参考訳): アクセスコントロール(Access Control)は、対象、リソース、アクセス権を定義する権限ポリシーの施行である。
グラフ構造化データには、複雑な構造のために高度な、柔軟な、きめ細かなアクセス制御が要求される。
いくつかの研究は、プロパティグラフ構造データ保護、きめ細かいアクセス制御、そしてそれらの概念の実現可能性と適用性を証明することに焦点を当てている。
しかし、概念的にも技術的にも異なる。
我々は,近年のデータベースモデルに加えて,さまざまなデータベースモデルの認証とアクセス制御に関する体系的な文献レビューから,論文を選択する。
定義された基準に基づいて、我々は、グラフ構造化データの保護、プロパティグラフ以外のグラフモデル、粗粒度アクセス制御アプローチ、あるいはグラフデータストアでのアプリケーション(概念実証実装なし)など、異なる目的を持つ研究を除外する。
残りの作品の最新バージョンは、アクセス制御アプローチと認証ポリシー定義と施行の観点から詳細に議論されている。
最後に、選択した作品の長所と短所を分析し、基本アクセス制御モデル、オープン/クローズドポリシー、負のパーミッションサポート、データストアに依存しない強制など、さまざまな側面の比較を行う。
関連論文リスト
- Extracting Database Access-control Policies From Web Applications [5.193592261722995]
アプリケーションコードにどのポリシーが埋め込まれているのか、アプリケーションがどのデータにアクセスするのかを神にするのは困難です。
本稿では,アクセス制御政策の抽出という政策抽出に取り組む。
Oteは、Ruby-on-Rails Webアプリケーションのポリシー抽出ツールである。
論文 参考訳(メタデータ) (2024-11-18T08:58:11Z) - RAGent: Retrieval-based Access Control Policy Generation [1.2016264781280588]
RAGentは、言語モデルに基づく新しい検索ベースのアクセス制御ポリシー生成フレームワークである。
RAGentは、平均的な最先端F1スコア87.9%のハイレベル要件仕様からアクセス要件を特定している。
既存のフレームワークとは異なり、RAGentは主題、アクション、リソースに加えて、目的や条件のような複雑なコンポーネントによるポリシーを生成する。
論文 参考訳(メタデータ) (2024-09-08T00:23:37Z) - Doc2SoarGraph: Discrete Reasoning over Visually-Rich Table-Text
Documents via Semantic-Oriented Hierarchical Graphs [79.0426838808629]
視覚的にリッチなテーブルテキスト文書に答えるTAT-DQAを提案する。
具体的には、離散推論機能を強化した新しいDoc2SoarGraphフレームワークを提案する。
我々は,TAT-DQAデータセットに関する広範な実験を行い,提案したフレームワークは,テストセット上でのエクサクティマッチ(EM)とF1スコアでそれぞれ17.73%,F1スコアで16.91%の最高のベースラインモデルを上回る結果を得た。
論文 参考訳(メタデータ) (2023-05-03T07:30:32Z) - Neural Graph Reasoning: Complex Logical Query Answering Meets Graph
Databases [63.96793270418793]
複雑な論理クエリ応答(CLQA)は、グラフ機械学習の最近登場したタスクである。
ニューラルグラフデータベース(NGDB)の概念を紹介する。
NGDBはNeural Graph StorageとNeural Graph Engineで構成されている。
論文 参考訳(メタデータ) (2023-03-26T04:03:37Z) - Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A
Reinforcement Learning Based Approach [61.74489383629319]
新たなOpen Radio Access Network(O-RAN)におけるデバイスの大量ランダムアクセスは、アクセス制御と管理に大きな課題をもたらします。
閉ループアクセス制御の強化学習(RL)支援方式を提案する。
深部RL支援SAUDは、連続的かつ高次元の状態と行動空間を持つ複雑な環境を解決するために提案されている。
論文 参考訳(メタデータ) (2023-03-05T12:25:49Z) - Relational Action Bases: Formalization, Effective Safety Verification,
and Invariants (Extended Version) [67.99023219822564]
我々はリレーショナルアクションベース(RAB)の一般的な枠組みを紹介する。
RABは両方の制限を解除することで既存のモデルを一般化する。
データ対応ビジネスプロセスのベンチマークにおいて、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-08-12T17:03:50Z) - Toward Deep Learning Based Access Control [3.2511618464944547]
本稿では,ディープラーニング技術の大幅な進歩を活用して,DLBAC(Deep Learning Based Access Control)を提案する。
DLBACは補完し、長期的には、従来のアクセス制御モデルをニューラルネットワークで置き換える可能性さえある。
提案手法は,精度,一般化,説明可能性に関する問題に対処することで実現可能であることを示す。
論文 参考訳(メタデータ) (2022-03-28T22:05:11Z) - Learning to Limit Data Collection via Scaling Laws: Data Minimization
Compliance in Practice [62.44110411199835]
我々は機械学習法における文献に基づいて、データとシステム性能を結びつけるデータ解釈に基づく収集を制限するフレームワークを提案する。
我々は、性能曲線微分に基づくデータ最小化基準を定式化し、有効かつ解釈可能な分数法法技術を提供する。
論文 参考訳(メタデータ) (2021-07-16T19:59:01Z) - Learning Attribute-Based and Relationship-Based Access Control Policies
with Unknown Values [0.6662800021628273]
本稿では、アクセス制御リスト(ACL)とエンティティに関する不完全な情報からABACおよびReBACポリシーをマイニングするための最初のアルゴリズムを提案する。
この問題のコアは、未知を含むラベル付き特徴ベクトルの集合から、簡潔な3値論理式を学習したものと見なせる。
論文 参考訳(メタデータ) (2020-08-19T13:56:29Z) - Towards Inheritable Models for Open-Set Domain Adaptation [56.930641754944915]
本稿では、将来、ソースデータセットが存在しない場合の適応を容易にするために、ソース学習モデルを用いた実用的なドメイン適応パラダイムを提案する。
本稿では,ソースデータがない場合でも,対象領域に対して最適なソースモデルの選択を可能にするために,継承可能性の定量化を目的とする手法を提案する。
論文 参考訳(メタデータ) (2020-04-09T07:16:30Z) - An Automatic Attribute Based Access Control Policy Extraction from
Access Logs [5.142415132534397]
属性ベースのアクセス制御(ABAC)モデルは、複雑なシステムや動的システムの認証要求に対処するための、より柔軟なアプローチを提供する。
本稿では,システムへのアクセスログからABACポリシールールを自動的に学習し,ポリシー開発プロセスを簡素化する手法を提案する。
論文 参考訳(メタデータ) (2020-03-16T15:08:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。