$\beta$-Variational Classifiers Under Attack
- URL: http://arxiv.org/abs/2008.09010v1
- Date: Thu, 20 Aug 2020 14:57:22 GMT
- Title: $\beta$-Variational Classifiers Under Attack
- Authors: Marco Maggipinto and Matteo Terzi and Gian Antonio Susto
- Abstract summary: It is possible to synthesise small adversarial perturbations that imperceptibly modify a correctly classified input data, making the network confidently misclassify it.
This has led to a plethora of different methods to try to improve robustness or detect the presence of these perturbations.
We study their robustness and detection capabilities, together with some novel insights on the generative part of the model.
- Score: 6.574517227976925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural networks have gained lots of attention in recent years thanks to
the breakthroughs obtained in the field of Computer Vision. However, despite
their popularity, it has been shown that they provide limited robustness in
their predictions. In particular, it is possible to synthesise small
adversarial perturbations that imperceptibly modify a correctly classified
input data, making the network confidently misclassify it. This has led to a
plethora of different methods to try to improve robustness or detect the
presence of these perturbations. In this paper, we perform an analysis of
$\beta$-Variational Classifiers, a particular class of methods that not only
solve a specific classification task, but also provide a generative component
that is able to generate new samples from the input distribution. More in
details, we study their robustness and detection capabilities, together with
some novel insights on the generative part of the model.
Related papers
- Evaluating the Robustness of Deep-Learning Algorithm-Selection Models by Evolving Adversarial Instances [0.16874375111244325]
Deep convolutional networks (DNN) are increasingly being used to perform algorithm-selection in neural domains.
adversarial samples are successfully generated from up to 56% of the original instances depending on the dataset.
We use an evolutionary algorithm (EA) to find perturbations of instances from two existing benchmarks for online bin packing that cause trained DRNs to misclassify.
arXiv Detail & Related papers (2024-06-24T12:48:44Z) - Sparse and Transferable Universal Singular Vectors Attack [5.498495800909073]
We propose a novel sparse universal white-box adversarial attack.
Our approach is based on truncated power providing sparsity to $(p,q)$-singular vectors of the hidden layers of Jacobian matrices.
Our findings demonstrate the vulnerability of state-of-the-art models to sparse attacks and highlight the importance of developing robust machine learning systems.
arXiv Detail & Related papers (2024-01-25T09:21:29Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Unfolding Local Growth Rate Estimates for (Almost) Perfect Adversarial
Detection [22.99930028876662]
Convolutional neural networks (CNN) define the state-of-the-art solution on many perceptual tasks.
Current CNN approaches largely remain vulnerable against adversarial perturbations of the input that have been crafted specifically to fool the system.
We propose a simple and light-weight detector, which leverages recent findings on the relation between networks' local intrinsic dimensionality (LID) and adversarial attacks.
arXiv Detail & Related papers (2022-12-13T17:51:32Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
We consider perturbations bounded by the $ell$--norm, which have been shown as effective attacks in the domains of image-recognition, natural language processing, and malware-detection.
We propose a novel defense method that consists of "truncation" and "adrial training"
Motivated by the insights we obtain, we extend these components to neural network classifiers.
arXiv Detail & Related papers (2022-01-23T21:18:17Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - Novelty Detection via Contrastive Learning with Negative Data
Augmentation [34.39521195691397]
We introduce a novel generative network framework for novelty detection.
Our model has significant superiority over cutting-edge novelty detectors.
Our model is more stable for training in a non-adversarial manner, compared to other adversarial based novelty detection methods.
arXiv Detail & Related papers (2021-06-18T07:26:15Z) - An Orthogonal Classifier for Improving the Adversarial Robustness of
Neural Networks [21.13588742648554]
Recent efforts have shown that imposing certain modifications on classification layer can improve the robustness of the neural networks.
We explicitly construct a dense orthogonal weight matrix whose entries have the same magnitude, leading to a novel robust classifier.
Our method is efficient and competitive to many state-of-the-art defensive approaches.
arXiv Detail & Related papers (2021-05-19T13:12:14Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
We propose a new probabilistic adversarial detector motivated by a recently introduced non-robust feature.
In this paper, we consider the non-robust features as a common property of adversarial examples, and we deduce it is possible to find a cluster in representation space corresponding to the property.
This idea leads us to probability estimate distribution of adversarial representations in a separate cluster, and leverage the distribution for a likelihood based adversarial detector.
arXiv Detail & Related papers (2020-12-07T07:21:18Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
We propose Conditional Probabilistic Generative Models (CPGM) for open set recognition.
CPGM can detect unknown samples but also classify known classes by forcing different latent features to approximate conditional Gaussian distributions.
Experiment results on multiple benchmark datasets reveal that the proposed method significantly outperforms the baselines.
arXiv Detail & Related papers (2020-08-12T06:23:49Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
We develop and leverage new tools, including recent breakthroughs from probability theory on robust isoperimetry.
Our results reveal fundamental tradeoffs between standard and robust accuracy that grow when data is imbalanced.
arXiv Detail & Related papers (2020-06-09T09:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.