An Orthogonal Classifier for Improving the Adversarial Robustness of
Neural Networks
- URL: http://arxiv.org/abs/2105.09109v1
- Date: Wed, 19 May 2021 13:12:14 GMT
- Title: An Orthogonal Classifier for Improving the Adversarial Robustness of
Neural Networks
- Authors: Cong Xu, Xiang Li and Min Yang
- Abstract summary: Recent efforts have shown that imposing certain modifications on classification layer can improve the robustness of the neural networks.
We explicitly construct a dense orthogonal weight matrix whose entries have the same magnitude, leading to a novel robust classifier.
Our method is efficient and competitive to many state-of-the-art defensive approaches.
- Score: 21.13588742648554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks are susceptible to artificially designed adversarial
perturbations. Recent efforts have shown that imposing certain modifications on
classification layer can improve the robustness of the neural networks. In this
paper, we explicitly construct a dense orthogonal weight matrix whose entries
have the same magnitude, thereby leading to a novel robust classifier. The
proposed classifier avoids the undesired structural redundancy issue in
previous work. Applying this classifier in standard training on clean data is
sufficient to ensure the high accuracy and good robustness of the model.
Moreover, when extra adversarial samples are used, better robustness can be
further obtained with the help of a special worst-case loss. Experimental
results show that our method is efficient and competitive to many
state-of-the-art defensive approaches. Our code is available at
\url{https://github.com/MTandHJ/roboc}.
Related papers
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off [8.169499497403102]
We propose a theoretically motivated formulation that mixes the output probabilities of a standard neural network and a robust neural network.
Our numerical experiments verify that the mixed classifier noticeably improves the accuracy-robustness trade-off.
arXiv Detail & Related papers (2023-11-26T02:25:30Z) - A Systematic Evaluation of Node Embedding Robustness [77.29026280120277]
We assess the empirical robustness of node embedding models to random and adversarial poisoning attacks.
We compare edge addition, deletion and rewiring strategies computed using network properties as well as node labels.
We found that node classification suffers from higher performance degradation as opposed to network reconstruction.
arXiv Detail & Related papers (2022-09-16T17:20:23Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
We show that neural network pruning can improve empirical robustness of deep neural networks (NNs)
Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training.
We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models.
arXiv Detail & Related papers (2022-06-15T05:48:51Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
We consider perturbations bounded by the $ell$--norm, which have been shown as effective attacks in the domains of image-recognition, natural language processing, and malware-detection.
We propose a novel defense method that consists of "truncation" and "adrial training"
Motivated by the insights we obtain, we extend these components to neural network classifiers.
arXiv Detail & Related papers (2022-01-23T21:18:17Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
Implicit neural networks offer competitive performance and reduced memory consumption.
They can remain brittle with respect to input adversarial perturbations.
This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks.
arXiv Detail & Related papers (2021-12-10T03:08:55Z) - Robustness against Adversarial Attacks in Neural Networks using
Incremental Dissipativity [3.8673567847548114]
Adversarial examples can easily degrade the classification performance in neural networks.
This work proposes an incremental dissipativity-based robustness certificate for neural networks.
arXiv Detail & Related papers (2021-11-25T04:42:57Z) - SmoothMix: Training Confidence-calibrated Smoothed Classifiers for
Certified Robustness [61.212486108346695]
We propose a training scheme, coined SmoothMix, to control the robustness of smoothed classifiers via self-mixup.
The proposed procedure effectively identifies over-confident, near off-class samples as a cause of limited robustness.
Our experimental results demonstrate that the proposed method can significantly improve the certified $ell$-robustness of smoothed classifiers.
arXiv Detail & Related papers (2021-11-17T18:20:59Z) - KNN-BERT: Fine-Tuning Pre-Trained Models with KNN Classifier [61.063988689601416]
Pre-trained models are widely used in fine-tuning downstream tasks with linear classifiers optimized by the cross-entropy loss.
These problems can be improved by learning representations that focus on similarities in the same class and contradictions when making predictions.
We introduce the KNearest Neighbors in pre-trained model fine-tuning tasks in this paper.
arXiv Detail & Related papers (2021-10-06T06:17:05Z) - Improve Adversarial Robustness via Weight Penalization on Classification
Layer [20.84248493946059]
Deep neural networks are vulnerable to adversarial attacks.
Recent studies show that well-designed classification parts can lead to better robustness.
We develop a novel light-weight-penalized defensive method.
arXiv Detail & Related papers (2020-10-08T08:57:57Z) - Consistency Regularization for Certified Robustness of Smoothed
Classifiers [89.72878906950208]
A recent technique of randomized smoothing has shown that the worst-case $ell$-robustness can be transformed into the average-case robustness.
We found that the trade-off between accuracy and certified robustness of smoothed classifiers can be greatly controlled by simply regularizing the prediction consistency over noise.
arXiv Detail & Related papers (2020-06-07T06:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.