Multi-scale Interaction for Real-time LiDAR Data Segmentation on an
Embedded Platform
- URL: http://arxiv.org/abs/2008.09162v2
- Date: Sun, 28 Nov 2021 19:23:43 GMT
- Title: Multi-scale Interaction for Real-time LiDAR Data Segmentation on an
Embedded Platform
- Authors: Shijie Li, Xieyuanli Chen, Yun Liu, Dengxin Dai, Cyrill Stachniss,
Juergen Gall
- Abstract summary: Real-time semantic segmentation of LiDAR data is crucial for autonomously driving vehicles.
Current approaches that operate directly on the point cloud use complex spatial aggregation operations.
We propose a projection-based method, called Multi-scale Interaction Network (MINet), which is very efficient and accurate.
- Score: 62.91011959772665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time semantic segmentation of LiDAR data is crucial for autonomously
driving vehicles, which are usually equipped with an embedded platform and have
limited computational resources. Approaches that operate directly on the point
cloud use complex spatial aggregation operations, which are very expensive and
difficult to optimize for embedded platforms. They are therefore not suitable
for real-time applications with embedded systems. As an alternative,
projection-based methods are more efficient and can run on embedded platforms.
However, the current state-of-the-art projection-based methods do not achieve
the same accuracy as point-based methods and use millions of parameters. In
this paper, we therefore propose a projection-based method, called Multi-scale
Interaction Network (MINet), which is very efficient and accurate. The network
uses multiple paths with different scales and balances the computational
resources between the scales. Additional dense interactions between the scales
avoid redundant computations and make the network highly efficient. The
proposed network outperforms point-based, image-based, and projection-based
methods in terms of accuracy, number of parameters, and runtime. Moreover, the
network processes more than 24 scans per second on an embedded platform, which
is higher than the framerates of LiDAR sensors. The network is therefore
suitable for autonomous vehicles.
Related papers
- Efficient Baselines for Motion Prediction in Autonomous Driving [7.608073471097835]
Motion Prediction (MP) of multiple surroundings agents is a crucial task in arbitrarily complex environments.
We aim to develop compact models using State-Of-The-Art (SOTA) techniques for MP, including attention mechanisms and GNNs.
arXiv Detail & Related papers (2023-09-06T22:18:16Z) - Spatial-information Guided Adaptive Context-aware Network for Efficient
RGB-D Semantic Segmentation [9.198120596225968]
We propose an efficient lightweight encoder-decoder network that reduces the computational parameters and guarantees the robustness of the algorithm.
Experimental results on NYUv2, SUN RGB-D, and Cityscapes datasets show that our method achieves a better trade-off among segmentation accuracy, inference time, and parameters than the state-of-the-art methods.
arXiv Detail & Related papers (2023-08-11T09:02:03Z) - SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation [65.4396959244269]
The paper tackles the challenge by designing a general framework to construct 3D learning architectures.
The proposed approach can be applied to general backbones like PointNet and DGCNN.
Experiments on ModelNet40, ShapeNet, and the real-world dataset ScanObjectNN, demonstrated that the method achieves a great trade-off between efficiency, rotation, and accuracy.
arXiv Detail & Related papers (2022-09-13T12:12:19Z) - ZippyPoint: Fast Interest Point Detection, Description, and Matching
through Mixed Precision Discretization [71.91942002659795]
We investigate and adapt network quantization techniques to accelerate inference and enable its use on compute limited platforms.
ZippyPoint, our efficient quantized network with binary descriptors, improves the network runtime speed, the descriptor matching speed, and the 3D model size.
These improvements come at a minor performance degradation as evaluated on the tasks of homography estimation, visual localization, and map-free visual relocalization.
arXiv Detail & Related papers (2022-03-07T18:59:03Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
Machine learning (ML) is a key technique for big-data-driven modelling and analysis of massive Internet of Things (IoT) based intelligent and ubiquitous computing.
For fast-increasing applications and data amounts, distributed learning is a promising emerging paradigm since it is often impractical or inefficient to share/aggregate data.
This paper studies the problem of training an ML model over decentralized systems, where data are distributed over many user devices.
arXiv Detail & Related papers (2022-02-07T15:04:15Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
We propose a framework for converting state-of-the-art segmentation models to MESS networks.
specially trained CNNs that employ parametrised early exits along their depth to save during inference on easier samples.
We co-optimise the number, placement and architecture of the attached segmentation heads, along with the exit policy, to adapt to the device capabilities and application-specific requirements.
arXiv Detail & Related papers (2021-06-07T11:37:03Z) - Multi-Task Network Pruning and Embedded Optimization for Real-time
Deployment in ADAS [0.0]
Camera-based Deep Learning algorithms are increasingly needed for perception in Automated Driving systems.
constraints from the automotive industry challenge the deployment of CNNs by imposing embedded systems with limited computational resources.
We propose an approach to embed a multi-task CNN network under such conditions on a commercial prototype platform.
arXiv Detail & Related papers (2021-01-19T19:29:38Z) - Dataflow Aware Mapping of Convolutional Neural Networks Onto Many-Core
Platforms With Network-on-Chip Interconnect [0.0764671395172401]
Machine intelligence, especially using convolutional neural networks (CNNs), has become a large area of research over the past years.
Many-core platforms consisting of several homogeneous cores can alleviate limitations with regard to physical implementation at the expense of an increased dataflow mapping effort.
This work presents an automated mapping strategy starting at the single-core level with different optimization targets for minimal runtime and minimal off-chip memory accesses.
The strategy is then extended towards a suitable many-core mapping scheme and evaluated using a scalable system-level simulation with a network-on-chip interconnect.
arXiv Detail & Related papers (2020-06-18T17:13:18Z) - FarSee-Net: Real-Time Semantic Segmentation by Efficient Multi-scale
Context Aggregation and Feature Space Super-resolution [14.226301825772174]
We introduce a novel and efficient module called Cascaded Factorized Atrous Spatial Pyramid Pooling (CF-ASPP)
It is a lightweight cascaded structure for Convolutional Neural Networks (CNNs) to efficiently leverage context information.
We achieve 68.4% mIoU at 84 fps on the Cityscapes test set with a single Nivida Titan X (Maxwell) GPU card.
arXiv Detail & Related papers (2020-03-09T03:53:57Z) - Key Points Estimation and Point Instance Segmentation Approach for Lane
Detection [65.37887088194022]
We propose a traffic line detection method called Point Instance Network (PINet)
The PINet includes several stacked hourglass networks that are trained simultaneously.
The PINet achieves competitive accuracy and false positive on the TuSimple and Culane datasets.
arXiv Detail & Related papers (2020-02-16T15:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.