ZippyPoint: Fast Interest Point Detection, Description, and Matching
through Mixed Precision Discretization
- URL: http://arxiv.org/abs/2203.03610v3
- Date: Sat, 8 Apr 2023 18:58:44 GMT
- Title: ZippyPoint: Fast Interest Point Detection, Description, and Matching
through Mixed Precision Discretization
- Authors: Menelaos Kanakis, Simon Maurer, Matteo Spallanzani, Ajad Chhatkuli,
Luc Van Gool
- Abstract summary: We investigate and adapt network quantization techniques to accelerate inference and enable its use on compute limited platforms.
ZippyPoint, our efficient quantized network with binary descriptors, improves the network runtime speed, the descriptor matching speed, and the 3D model size.
These improvements come at a minor performance degradation as evaluated on the tasks of homography estimation, visual localization, and map-free visual relocalization.
- Score: 71.91942002659795
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient detection and description of geometric regions in images is a
prerequisite in visual systems for localization and mapping. Such systems still
rely on traditional hand-crafted methods for efficient generation of
lightweight descriptors, a common limitation of the more powerful neural
network models that come with high compute and specific hardware requirements.
In this paper, we focus on the adaptations required by detection and
description neural networks to enable their use in computationally limited
platforms such as robots, mobile, and augmented reality devices. To that end,
we investigate and adapt network quantization techniques to accelerate
inference and enable its use on compute limited platforms. In addition, we
revisit common practices in descriptor quantization and propose the use of a
binary descriptor normalization layer, enabling the generation of distinctive
binary descriptors with a constant number of ones. ZippyPoint, our efficient
quantized network with binary descriptors, improves the network runtime speed,
the descriptor matching speed, and the 3D model size, by at least an order of
magnitude when compared to full-precision counterparts. These improvements come
at a minor performance degradation as evaluated on the tasks of homography
estimation, visual localization, and map-free visual relocalization. Code and
models are available at https://github.com/menelaoskanakis/ZippyPoint.
Related papers
- Towards Efficient Verification of Quantized Neural Networks [9.352320240912109]
Quantization replaces floating point arithmetic with integer arithmetic in deep neural network models.
We show how efficiency can be improved by utilizing gradient-based search methods and also bound-propagation techniques.
arXiv Detail & Related papers (2023-12-20T00:43:13Z) - Quantization of Deep Neural Networks to facilitate self-correction of
weights on Phase Change Memory-based analog hardware [0.0]
We develop an algorithm to approximate a set of multiplicative weights.
These weights aim to represent the original network's weights with minimal loss in performance.
Our results demonstrate that, when paired with an on-chip pulse generator, our self-correcting neural network performs comparably to those trained with analog-aware algorithms.
arXiv Detail & Related papers (2023-09-30T10:47:25Z) - Incrementally-Computable Neural Networks: Efficient Inference for
Dynamic Inputs [75.40636935415601]
Deep learning often faces the challenge of efficiently processing dynamic inputs, such as sensor data or user inputs.
We take an incremental computing approach, looking to reuse calculations as the inputs change.
We apply this approach to the transformers architecture, creating an efficient incremental inference algorithm with complexity proportional to the fraction of modified inputs.
arXiv Detail & Related papers (2023-07-27T16:30:27Z) - A Lightweight, Efficient and Explainable-by-Design Convolutional Neural
Network for Internet Traffic Classification [9.365794791156972]
This paper introduces a new Lightweight, Efficient and eXplainable-by-design convolutional neural network (LEXNet) for Internet traffic classification.
LEXNet relies on a new residual block (for lightweight and efficiency purposes) and prototype layer (for explainability)
Based on a commercial-grade dataset, our evaluation shows that LEXNet succeeds to maintain the same accuracy as the best performing state-of-the-art neural network.
arXiv Detail & Related papers (2022-02-11T10:21:34Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Multi-Task Network Pruning and Embedded Optimization for Real-time
Deployment in ADAS [0.0]
Camera-based Deep Learning algorithms are increasingly needed for perception in Automated Driving systems.
constraints from the automotive industry challenge the deployment of CNNs by imposing embedded systems with limited computational resources.
We propose an approach to embed a multi-task CNN network under such conditions on a commercial prototype platform.
arXiv Detail & Related papers (2021-01-19T19:29:38Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z) - Mixed-Precision Quantized Neural Network with Progressively Decreasing
Bitwidth For Image Classification and Object Detection [21.48875255723581]
A mixed-precision quantized neural network with progressively ecreasing bitwidth is proposed to improve the trade-off between accuracy and compression.
Experiments on typical network architectures and benchmark datasets demonstrate that the proposed method could achieve better or comparable results.
arXiv Detail & Related papers (2019-12-29T14:11:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.