論文の概要: COOKIE: A Dataset for Conversational Recommendation over Knowledge
Graphs in E-commerce
- arxiv url: http://arxiv.org/abs/2008.09237v1
- Date: Fri, 21 Aug 2020 00:11:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 21:02:00.805993
- Title: COOKIE: A Dataset for Conversational Recommendation over Knowledge
Graphs in E-commerce
- Title(参考訳): COOKIE:Eコマースにおける知識グラフに関する会話勧告データセット
- Authors: Zuohui Fu, Yikun Xian, Yaxin Zhu, Yongfeng Zhang, Gerard de Melo
- Abstract要約: 我々は,COOKIEと呼ばれる電子商取引プラットフォームにおける知識グラフに対する対話的推薦のための新しいデータセットを提案する。
データセットはAmazonのレビューコーパスから構築され、ユーザエージェント対話とカスタムナレッジグラフを統合してレコメンデーションする。
- 参考スコア(独自算出の注目度): 64.95907840457471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a new dataset for conversational recommendation over
knowledge graphs in e-commerce platforms called COOKIE. The dataset is
constructed from an Amazon review corpus by integrating both user-agent
dialogue and custom knowledge graphs for recommendation. Specifically, we first
construct a unified knowledge graph and extract key entities between
user--product pairs, which serve as the skeleton of a conversation. Then we
simulate conversations mirroring the human coarse-to-fine process of choosing
preferred items. The proposed baselines and experiments demonstrate that our
dataset is able to provide innovative opportunities for conversational
recommendation.
- Abstract(参考訳): 本稿では,電子商取引プラットフォームのナレッジグラフよりも会話レコメンデーションのための新しいデータセット cookie を提案する。
データセットはAmazonのレビューコーパスから構築され、ユーザエージェント対話とカスタムナレッジグラフを統合してレコメンデーションする。
具体的には,まず統合知識グラフを構築し,会話のスケルトンとして機能するユーザとプロダクトのペア間の重要なエンティティを抽出する。
そして、選択した項目を人間の粗大なプロセスに反映した会話をシミュレートする。
提案したベースラインと実験により,我々のデータセットが会話レコメンデーションに革新的な機会を提供することを示す。
関連論文リスト
- Leveraging Knowledge Graph Embedding for Effective Conversational Recommendation [4.079573593766921]
知識グラフに基づく会話推薦システム(KG-CRS参照)を提案する。
具体的には,まずユーザ・テムグラフとアイテム・アトリビュートグラフを動的グラフに統合し,否定的な項目や属性を除去することで対話プロセス中に動的に変化する。
次に、ユーザ、アイテム、属性の情報埋め込みを、グラフ上の隣人の伝播も考慮して学習する。
論文 参考訳(メタデータ) (2024-08-02T15:38:55Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
会話レコメンデータシステム(CRS)は,自然言語会話を通じてユーザの嗜好を喚起することで,ユーザに対して関連項目を推薦することを目的としている。
先行作業では、アイテムのセマンティック情報、対話生成のための言語モデル、関連する項目のランク付けのためのレコメンデーションモジュールとして、外部知識グラフを利用することが多い。
本稿では、自然言語の項目を表現し、CRSを自然言語処理タスクとして定式化する。
論文 参考訳(メタデータ) (2024-01-25T14:07:34Z) - AUGUST: an Automatic Generation Understudy for Synthesizing
Conversational Recommendation Datasets [56.052803235932686]
本稿では,大規模かつ高品質なレコメンデーションダイアログを生成する新しい自動データセット合成手法を提案する。
i)従来のレコメンデーションデータセットからの豊富なパーソナライズされたユーザプロファイル、(ii)知識グラフからの豊富な外部知識、(iii)人間対人間会話レコメンデーションデータセットに含まれる会話能力。
論文 参考訳(メタデータ) (2023-06-16T05:27:14Z) - Multi-grained Hypergraph Interest Modeling for Conversational
Recommendation [75.65483522949857]
複雑な履歴データの下でユーザの興味を捉えるために, マルチグラデーション・ハイパーグラフ・インフォメーション・モデリング手法を提案する。
提案手法では,まず,ユーザの過去の対話セッションをモデル化し,セッションベースハイパーグラフを作成するためにハイパーグラフ構造を用いる。
さらに,2種類のハイパーグラフに対して多粒度ハイパーグラフの畳み込みを行い,拡張表現を用いて関心を意識したCRSを開発する。
論文 参考訳(メタデータ) (2023-05-04T13:13:44Z) - Talk the Walk: Synthetic Data Generation for Conversational Music
Recommendation [62.019437228000776]
本稿では,広く利用可能なアイテムコレクションにおいて,符号化された専門知識を活用することで,現実的な高品質な会話データを生成するTalkWalkを提案する。
人間の収集したデータセットで100万以上の多様な会話を生成します。
論文 参考訳(メタデータ) (2023-01-27T01:54:16Z) - COLA: Improving Conversational Recommender Systems by Collaborative
Augmentation [9.99763097964222]
アイテム表現学習とユーザ嗜好モデリングの両方を改善するために,協調的拡張(COLA)手法を提案する。
すべての会話から対話型ユーザテムグラフを構築し,ユーザ認識情報によってアイテム表現を拡大する。
ユーザの嗜好モデルを改善するため,学習コーパスから類似した会話を検索し,ユーザの興味を反映した関連項目や属性を用いてユーザ表現を増強する。
論文 参考訳(メタデータ) (2022-12-15T12:37:28Z) - Improving Conversational Recommendation Systems' Quality with
Context-Aware Item Meta Information [42.88448098873448]
対話レコメンデーションシステム(CRS)は,対話履歴からユーザの好みを推測することでユーザと対話する。
従来のCRSでは、知識グラフ(KG)ベースのレコメンデーションモジュールを使用し、応答生成のための言語モデルとKGを統合する。
本稿では,事前学習言語モデル(PLM)と項目メタデータエンコーダを組み合わせた,シンプルで効果的なアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-15T14:12:48Z) - Improving Conversational Recommender Systems via Knowledge Graph based
Semantic Fusion [77.21442487537139]
対話型レコメンデータシステム(CRS)は,対話型対話を通じて高品質なアイテムをユーザに推薦することを目的としている。
まず、会話データ自体にユーザの好みを正確に理解するための十分なコンテキスト情報がない。
第二に、自然言語表現とアイテムレベルのユーザ嗜好の間には意味的なギャップがある。
論文 参考訳(メタデータ) (2020-07-08T11:14:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。