論文の概要: Robust Mean Estimation in High Dimensions via $\ell_0$ Minimization
- arxiv url: http://arxiv.org/abs/2008.09239v1
- Date: Fri, 21 Aug 2020 00:19:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 21:27:10.845577
- Title: Robust Mean Estimation in High Dimensions via $\ell_0$ Minimization
- Title(参考訳): $\ell_0$ 最小化による高次元ロバスト平均推定
- Authors: Jing Liu, Aditya Deshmukh, Venugopal V. Veeravalli
- Abstract要約: 本研究では,高次元におけるロバスト平均推定問題について検討し,データポイントの0.5ドル分を任意に破壊することができることを示した。
圧縮センシングによってモチベーションを得た結果、ロバスト平均推定問題を$ell_p$$(0p1)$の最小化として定式化する。
合成データ実験と実データ実験の両方で、提案アルゴリズムは最先端のロバストな平均推定法を大幅に上回っていることが示された。
- 参考スコア(独自算出の注目度): 21.65637588606572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the robust mean estimation problem in high dimensions, where $\alpha
<0.5$ fraction of the data points can be arbitrarily corrupted. Motivated by
compressive sensing, we formulate the robust mean estimation problem as the
minimization of the $\ell_0$-`norm' of the outlier indicator vector, under
second moment constraints on the inlier data points. We prove that the global
minimum of this objective is order optimal for the robust mean estimation
problem, and we propose a general framework for minimizing the objective. We
further leverage the $\ell_1$ and $\ell_p$ $(0<p<1)$, minimization techniques
in compressive sensing to provide computationally tractable solutions to the
$\ell_0$ minimization problem. Both synthetic and real data experiments
demonstrate that the proposed algorithms significantly outperform
state-of-the-art robust mean estimation methods.
- Abstract(参考訳): 高次元におけるロバスト平均推定問題について検討し、データポイントの$\alpha <0.5$分を任意に破壊することができる。
圧縮センシングによって動機づけられたロバスト平均推定問題を、外れ値インジケータベクトルの$\ell_0$-`norm' の最小化として、外れ値データ点に対する第2モーメント制約下で定式化する。
我々は,この目標の最小値がロバスト平均推定問題に対して最適であることを示すとともに,目標を最小化する汎用フレームワークを提案する。
さらに、$\ell_1$および$\ell_p$$(0<p<1)$, 圧縮センシングにおける最小化技術を活用して、$\ell_0$最小化問題に対する計算処理可能な解を提供する。
合成データ実験と実データ実験の両方で、提案アルゴリズムは最先端のロバストな平均推定法を大幅に上回ることを示した。
関連論文リスト
- Active Subsampling for Measurement-Constrained M-Estimation of Individualized Thresholds with High-Dimensional Data [3.1138411427556445]
測定制約のある問題では、大きなデータセットが利用可能であるにもかかわらず、大きなデータセットのごく一部でラベルを観測するのに手頃な価格にしかならない。
このことは、どのデータポイントが予算制約のあるラベルに最も有益であるかという重要な疑問を引き起こします。
本稿では,測定制約付きM推定フレームワークにおける最適個別化しきい値の推定に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-21T00:21:17Z) - Regret Minimization and Statistical Inference in Online Decision Making with High-dimensional Covariates [7.21848268647674]
我々は、決定のための$varepsilon$-greedybanditアルゴリズムと、疎帯域パラメータを推定するためのハードしきい値アルゴリズムを統合する。
マージン条件下では、我々の手法は、$O(T1/2)$ regret あるいは古典的な$O(T1/2)$-consistent推論のいずれかを達成する。
論文 参考訳(メタデータ) (2024-11-10T01:47:11Z) - Robust Second-Order Nonconvex Optimization and Its Application to Low Rank Matrix Sensing [47.32366699399839]
近似第二エピシロン依存(SOSP)の発見は、よく研究され基礎的な問題である。
本稿では,低次元センサマシン最適化問題に適用する。
論文 参考訳(メタデータ) (2024-03-12T01:27:44Z) - Robust Sparse Mean Estimation via Incremental Learning [15.536082641659423]
そこで本研究では, 部分的に破損したサンプルの集合から, k$-sparse平均を推定することを目的とする, 頑健な平均推定問題について検討する。
両課題を適度な条件下で克服する簡易平均推定器を提案する。
私たちのメソッドは、スパーシティレベル$k$に関する事前の知識を必要としない。
論文 参考訳(メタデータ) (2023-05-24T16:02:28Z) - Estimating the minimizer and the minimum value of a regression function
under passive design [72.85024381807466]
最小値 $boldsymbolx*$ と最小値 $f*$ を滑らかで凸な回帰関数 $f$ で推定する新しい手法を提案する。
2次リスクと$boldsymbolz_n$の最適化誤差、および$f*$を推定するリスクについて、漸近的でない上界を導出する。
論文 参考訳(メタデータ) (2022-11-29T18:38:40Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
縮退した線形マルコフ+デルタ決定における最適同定問題について, 生成モデルに基づく固定信頼度設定における検討を行った。
複雑な非最適化プログラムの解としての下位境界は、そのようなアルゴリズムを考案する出発点として用いられる。
論文 参考訳(メタデータ) (2022-08-11T04:12:50Z) - Learning with User-Level Privacy [61.62978104304273]
ユーザレベルの差分プライバシー制約下での学習課題を,アルゴリズムを用いて解析する。
個々のサンプルのプライバシーのみを保証するのではなく、ユーザレベルのdpはユーザの貢献全体を保護します。
プライバシコストが$tau$に比例した$K$適応的に選択されたクエリのシーケンスにプライベートに答えるアルゴリズムを導き出し、私たちが検討する学習タスクを解決するためにそれを適用します。
論文 参考訳(メタデータ) (2021-02-23T18:25:13Z) - Robust estimation via generalized quasi-gradients [28.292300073453877]
最近提案されたロバスト推定問題の多くが効率的に解ける理由を示す。
我々は「一般化された準次数」の存在を識別する
一般化された準勾配が存在することを示し、効率的なアルゴリズムを構築する。
論文 参考訳(メタデータ) (2020-05-28T15:14:33Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
本稿では、生成モデル(シミュレータ)へのアクセスを想定して、強化学習のサンプル効率について検討する。
最初に$gamma$-discounted infinite-horizon Markov decision process (MDPs) with state space $mathcalS$ and action space $mathcalA$を考える。
対象の精度を考慮すれば,モデルに基づく計画アルゴリズムが最小限のサンプルの複雑さを実現するのに十分であることを示す。
論文 参考訳(メタデータ) (2020-05-26T17:53:18Z) - High-Dimensional Robust Mean Estimation via Gradient Descent [73.61354272612752]
一定対向分数の存在下でのロバスト平均推定の問題は勾配降下によって解けることを示す。
我々の研究は、近辺の非補題推定とロバスト統計の間の興味深い関係を確立する。
論文 参考訳(メタデータ) (2020-05-04T10:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。