論文の概要: Locally minimax optimal and dimension-agnostic discrete argmin inference
- arxiv url: http://arxiv.org/abs/2503.21639v2
- Date: Thu, 01 May 2025 15:51:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.351098
- Title: Locally minimax optimal and dimension-agnostic discrete argmin inference
- Title(参考訳): 局所最小値最適化と次元に依存しない離散アルグミン推定
- Authors: Ilmun Kim, Aaditya Ramdas,
- Abstract要約: この論文は基本的な推論問題に取り組む:$d$次元ベクトルから未知の平均$boldsymbolmu$を持つ$d$次元ベクトルから$n$の観測を与えられると、$boldsymbolmu$の最小成分に対応する指数に対する信頼セットを形成する必要がある。
双対性により、$mu_r$が最小かどうかに関わらず、$r$の$1,ldots,d$に対して、これをテストに還元する。
我々は$d$が$n$でスケールするか、$boldの任意の関係にかかわらず、妥当性を維持する「次元に依存しない」テストを提案する。
- 参考スコア(独自算出の注目度): 33.17951971728784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper tackles a fundamental inference problem: given $n$ observations from a $d$ dimensional vector with unknown mean $\boldsymbol{\mu}$, we must form a confidence set for the index (or indices) corresponding to the smallest component of $\boldsymbol{\mu}$. By duality, we reduce this to testing, for each $r$ in $1,\ldots,d$, whether $\mu_r$ is the smallest. Based on the sample splitting and self-normalization approach of Kim and Ramdas (2024), we propose "dimension-agnostic" tests that maintain validity regardless of how $d$ scales with $n$, and regardless of arbitrary ties in $\boldsymbol{\mu}$. Notably, our validity holds under mild moment conditions, requiring little more than finiteness of a second moment, and permitting possibly strong dependence between coordinates. In addition, we establish the local minimax separation rate for this problem, which adapts to the cardinality of a confusion set, and show that the proposed tests attain this rate. Furthermore, we develop robust variants that continue to achieve the same minimax rate under heavy-tailed distributions with only finite second moments. Empirical results on simulated and real data illustrate the strong performance of our approach in terms of type I error control and power compared to existing methods.
- Abstract(参考訳): この論文は基本的な推論問題に取り組む:$d$次元ベクトルから未知の平均$\boldsymbol{\mu}$で$n$の観測を与えられると、$\boldsymbol{\mu}$の最小成分に対応する指数(または指数)に対する信頼セットを形成する必要がある。
双対性により、$\mu_r$が最小かどうかに関わらず、$r$の$1,\ldots,d$に対してテストに還元する。
Kim and Ramdas (2024) のサンプル分割と自己正規化のアプローチに基づいて、$d$が$n$でスケールする方法や$\boldsymbol{\mu}$の任意の関係によらず、妥当性を維持する「次元に依存しない」テストを提案する。
特に、我々の妥当性は穏やかなモーメント条件下で、第2モーメントの有限性をほとんど必要とせず、座標間の強い依存を許す。
さらに,混乱集合の濃度に適応する局所的ミニマックス分離率を確立し,提案した実験でこの値が得られることを示す。
さらに,有限第二モーメントしか持たない重み付き分布において,同じミニマックス速度を達成し続ける頑健な変種を開発する。
シミュレーションおよび実データを用いた実験結果は,従来の手法と比較して,I型エラー制御とパワーの観点から,我々のアプローチの強い性能を示している。
関連論文リスト
- Active Subsampling for Measurement-Constrained M-Estimation of Individualized Thresholds with High-Dimensional Data [3.1138411427556445]
測定制約のある問題では、大きなデータセットが利用可能であるにもかかわらず、大きなデータセットのごく一部でラベルを観測するのに手頃な価格にしかならない。
このことは、どのデータポイントが予算制約のあるラベルに最も有益であるかという重要な疑問を引き起こします。
本稿では,測定制約付きM推定フレームワークにおける最適個別化しきい値の推定に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-21T00:21:17Z) - Convergence Rate Analysis of LION [54.28350823319057]
LION は、勾配カルシュ=クーン=T (sqrtdK-)$で測定された $cal(sqrtdK-)$ の反復を収束する。
従来のSGDと比較して,LIONは損失が小さく,性能も高いことを示す。
論文 参考訳(メタデータ) (2024-11-12T11:30:53Z) - Regret Minimization and Statistical Inference in Online Decision Making with High-dimensional Covariates [7.21848268647674]
我々は、決定のための$varepsilon$-greedybanditアルゴリズムと、疎帯域パラメータを推定するためのハードしきい値アルゴリズムを統合する。
マージン条件下では、我々の手法は、$O(T1/2)$ regret あるいは古典的な$O(T1/2)$-consistent推論のいずれかを達成する。
論文 参考訳(メタデータ) (2024-11-10T01:47:11Z) - Testing the Feasibility of Linear Programs with Bandit Feedback [53.40256244941895]
我々は,低回帰アルゴリズムと反復対数の漸近法則に基づくテストを開発する。
このテストが信頼できることを証明し、信号レベルに適応する'$Gamma,$ of any instance。
信頼性テストのサンプルコストに対して、最小限の$(Omegad/Gamma2)$で補う。
論文 参考訳(メタデータ) (2024-06-21T20:56:35Z) - Estimation of entropy-regularized optimal transport maps between
non-compactly supported measures [15.857723276537248]
本稿では,ガウシアン以下の音源と目標測度の間の2乗ユークリッドコストでエントロピー規則化された最適輸送マップを推定する問題に対処する。
論文 参考訳(メタデータ) (2023-11-20T17:18:21Z) - Robust Sparse Mean Estimation via Incremental Learning [15.536082641659423]
そこで本研究では, 部分的に破損したサンプルの集合から, k$-sparse平均を推定することを目的とする, 頑健な平均推定問題について検討する。
両課題を適度な条件下で克服する簡易平均推定器を提案する。
私たちのメソッドは、スパーシティレベル$k$に関する事前の知識を必要としない。
論文 参考訳(メタデータ) (2023-05-24T16:02:28Z) - Pseudonorm Approachability and Applications to Regret Minimization [73.54127663296906]
我々は、高次元 $ell_infty$-approachability 問題を、低次元の擬ノルムアプローチ可能性問題に変換する。
我々は、$ell$や他のノルムに対するアプローチ可能性に関する以前の研究に類似した疑似ノルムアプローチ可能性のアルゴリズム理論を開発する。
論文 参考訳(メタデータ) (2023-02-03T03:19:14Z) - Estimating the minimizer and the minimum value of a regression function
under passive design [72.85024381807466]
最小値 $boldsymbolx*$ と最小値 $f*$ を滑らかで凸な回帰関数 $f$ で推定する新しい手法を提案する。
2次リスクと$boldsymbolz_n$の最適化誤差、および$f*$を推定するリスクについて、漸近的でない上界を導出する。
論文 参考訳(メタデータ) (2022-11-29T18:38:40Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
縮退した線形マルコフ+デルタ決定における最適同定問題について, 生成モデルに基づく固定信頼度設定における検討を行った。
複雑な非最適化プログラムの解としての下位境界は、そのようなアルゴリズムを考案する出発点として用いられる。
論文 参考訳(メタデータ) (2022-08-11T04:12:50Z) - Localization in 1D non-parametric latent space models from pairwise
affinities [6.982738885923206]
対の親和性から一次元トーラスにおける潜伏位置を推定する問題を考察する。
高確率でsqrtlog(n)/n$の順序の最大誤差で全ての潜伏位置を確実にローカライズする推定手順を導入する。
論文 参考訳(メタデータ) (2021-08-06T13:05:30Z) - Instance-optimality in optimal value estimation: Adaptivity via
variance-reduced Q-learning [99.34907092347733]
本稿では,マルコフ決定過程における最適な$Q$値関数を離散状態と動作で推定する問題を解析する。
局所的なミニマックスフレームワークを用いて、この関数は任意の推定手順の精度の低い境界に現れることを示す。
他方,Q$ラーニングの分散還元版を解析することにより,状態と行動空間の対数的要因まで,下位境界のシャープさを確立する。
論文 参考訳(メタデータ) (2021-06-28T00:38:54Z) - Spatially relaxed inference on high-dimensional linear models [48.989769153211995]
本研究では,空間的に制約されたクラスタリング,統計的推論,アンサンブルを組み合わせ,複数のクラスタリング推論解を集約するアンサンブルクラスタリング推論アルゴリズムの特性について検討する。
アンサンブルクラスタ推論アルゴリズムは,最大クラスター径に等しい$delta$-FWERの標準仮定で$delta$-FWERを制御することを示す。
論文 参考訳(メタデータ) (2021-06-04T16:37:19Z) - LSDAT: Low-Rank and Sparse Decomposition for Decision-based Adversarial
Attack [74.5144793386864]
LSDATは、入力サンプルのスパース成分と対向サンプルのスパース成分によって形成される低次元部分空間における摂動を加工する。
LSDは画像ピクセル領域で直接動作し、スパース性などの非$ell$制約が満たされることを保証します。
論文 参考訳(メタデータ) (2021-03-19T13:10:47Z) - The Sample Complexity of Robust Covariance Testing [56.98280399449707]
i. i. d.
形式 $Z = (1-epsilon) X + epsilon B$ の分布からのサンプル。ここで $X$ はゼロ平均で未知の共分散である Gaussian $mathcalN(0, Sigma)$ である。
汚染がない場合、事前の研究は、$O(d)$サンプルを使用するこの仮説テストタスクの単純なテスターを与えた。
サンプル複雑性の上限が $omega(d2)$ for $epsilon$ an arbitrarily small constant and $gamma であることを証明します。
論文 参考訳(メタデータ) (2020-12-31T18:24:41Z) - Robust Mean Estimation in High Dimensions via $\ell_0$ Minimization [21.65637588606572]
本研究では,高次元におけるロバスト平均推定問題について検討し,データポイントの0.5ドル分を任意に破壊することができることを示した。
圧縮センシングによってモチベーションを得た結果、ロバスト平均推定問題を$ell_p$$(0p1)$の最小化として定式化する。
合成データ実験と実データ実験の両方で、提案アルゴリズムは最先端のロバストな平均推定法を大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2020-08-21T00:19:48Z) - Computationally efficient sparse clustering [67.95910835079825]
我々はPCAに基づく新しいクラスタリングアルゴリズムの有限サンプル解析を行う。
ここでは,ミニマックス最適誤クラスタ化率を,体制$|theta infty$で達成することを示す。
論文 参考訳(メタデータ) (2020-05-21T17:51:30Z) - Optimal rates for independence testing via $U$-statistic permutation
tests [7.090165638014331]
独立分布と同一分布のペアが$sigma$-finiteで分離可能な測度空間で値を取る独立性テストの問題について検討する。
最初に、独立性の有効なテストはなく、$f: D(f) geq rho2 $ という形の代替と一様に一致していることを示す。
論文 参考訳(メタデータ) (2020-01-15T19:04:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。